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Abstract

Network traffic analysis attempts to infer sensitive information from packet and flow
communication patterns. One of the most important applications of this analysis is mal-
ware/malicious flow detection. Using network traffic analysis, experts have shown that
botnets, Trojans, and other types of malware can be detected and then subsequently
expunged from a network. Furthermore, as network traffic in greater quantities is en-
crypted and becomes more complex, machine learning and deep learning approaches
increasingly are being used to detect malware. This inevitably comes with a price.
Deep learning algorithms are critically vulnerable to adversarial examples. Using this
vulnerability, carefully designed malware, by perturbing ordinarily inconsequentially
aspects of their design, can effectively evade detection from these system. In this work,
we firstly showcase the effectiveness of these types of these attacks, showing that a
simple black-box attack can cause a 40% decrease in accuracy on the USTC-TFC2016
dataset and that on in a white-box setting, a similar attack can cause a 75% decrease
in accuracy on the CSE-CIC-IDS2018 dataset.

In order to stop adversarial attacks a number approaches including adversarial train-
ing, defensive distillation, and feature squeezing. However, here we show that using
Lecuyer et al.’s [47] approach of using differential privacy properties to provide prov-
able robustness, we can provably provide guarantees on machine learning algorithms
ability to separate malicious from benign flows. We show specifically that at a minimal
loss of accuracy (< 5%), for small attack vector sizes, we effectively and provably pre-
vent adversarial examples from tricking our models. We further propose in this work a
means of using the robustness metric that we glean from this approach as means setting
priorities when investigating flows and thus of making malware detection systems more
manageable.
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Chapter 1

Introduction

An attack in 2013 on the Target Corporation using malicious software or malware

managed to compromise millions of customers’ credit card information. Specifically, the

malware installed on the company’s registers managed to copy and send the information

of whomever shopped at Target throughout the 2013 holiday season [19]. Following the

attack, in addition to the leak of millions of individuals’ private data, Target’s market

shares fell 11%.

Malware and network attacks can have devastating effects on a given system. Recent

attacks like the Target malware attack can have devastating monetary effects and can

undermine the privacy of millions of people. Other attacks like the 2016 botnet attack

Mirai prevented millions of people from accessing Amazon.com, the BBC, Netflix, and

the New York Times [12]. The GoldenEye ransomware caused blackouts in Ukraine

when it targeted Ukrengergo, the state power distributor [8]. Being able to detect

malware and their associated network flows, while challenging, is of vital importance.

Traditional approaches to malware and network attack detection focused on

signature-based approaches. Signature-based approaches search for the specific binary

hashes of malicious software. These types of approaches however, have begun to fall
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out of favour due the increased complexity of attacks. Signature-based approaches

increasingly fail because they are only able to detect attacks that have previously

been seen before. As a result of the increasing complexity of malware and malicious

network activity, network operators and analyst have been looking towards a new

option: machine learning.

Machine learning, particularly deep learning, attempts to learn deep underlying fea-

tures in previous raw traffic data in order to detect new and different types of malicious

network flows. The advantage of deep learning is that complex features can be learned

automatically (at the expense of interpretability), from raw data and that it scales well

with the amount of data that it must process as well [76]. Large strides were initially

made within this area; an outstanding amount of information could be learned from

malware packets and network flows.

This progress however was largely complicated with the increasing encryption of

network traffic on the internet. All content-based network traffic analyses are rendered

useless when the traffic payloads are all encrypted. Works like Wang et al.’s [72], which

detects malware in HTTP flows by looking at payloads as a text document and then

performing natural language processing on the flows, become defunct in an encrypted

setting. Taking encryption into account is largely no longer an option. At the time of

writing (August 2019), 91% of sites visited by US users were secured using encryption

and 85% of sites visited by international users were encrypted. Similarly, over 75%

of email traffic has become encrypted. This trend is thus here to stay, foiling many

different types of machine learning malware detection techniques [5].

As a result of these changes in network traffic, many researchers have recently begun

looking to using other features in machine learning algorithms to detect malicious traffic

flows. These types of features have included packet inter-arrival times, packets sizes,

number of bytes sent, Transport Layer Security (TLS) handshake information, among a
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host of other information. The benefit of using these features is that statistical features

cannot be hidden as they are intrinsic to networking. Furthermore, other aspects of this

information like the TLS handshake must be sent in the clear (unencrypted) in order

to set up connections between a client and server. Although inherently less accurate

than previous approaches, these methodologies have led to impressive results. Some

networks have been able to achieve upwards of 94% [59], 98% [70], 99% accuracy [74]

on their respective datasets.

However, despite this recent success in detecting malicious flows amongst benign

ones, current methodologies come at a clear cost. Neural networks and associated

machine learning techniques are vulnerable to adversarial examples. Adversarial exam-

ples are created when small perturbations cause a neural network to reclassify a given

instance x to another completely different label.

Figure 1.1: Example of Adversarial Example [1].

For example, as seen in Fig 1.1, a small perturbation introduced by noise can cause

a given neural network to reclassify a panda as a gibbon. Likewise, in our domain, by

adding a few more packets, or slightly changing the data rate, an adversary could cause

their malicious traffic or malware to go undetected. As we will show in this work, this

is not only possible, but it can have devastating effects on a system.

Making systems robust to adversarial examples has taken off within the last six years

since Szegedy et al. [66] first described them in 2013. However, in quick succession to
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different proposed defence proposed, new attacks often immediately defeat them. As

a result, creating a system that is provably robust to adversarial examples (especially

in our context where people’s private information and money is on the line) is of dire

importance.

Despite many works finding that neural networks are inherently vulnerable to ad-

versarial attacks [63], [67], recently a work by Lecuyer et al. [47] showed that by using

differential privacy and an alternative prediction scheme, they could make a neural

network provably robust to adversarial examples. Differential privacy is ordinarily a

means of constraining the information disclosure of individual members of a database.

However, in this context, Lecuyer et al. [47] showed that its properties could also be

used to make models more robust. At the cost of some accuracy, Lecuyer et al. [47]

showcased that a system can be made provably robust by incorporating differential

privacy during training and by making multiple predictions when labelling. This is

where our contributions come in; we seek to combine the problem of adversarial weak-

ness to adversarial examples within the networking setting to the solution of differential

privacy.

1.1 Our Contribution

Now that we have outlined the problem that we seek to address (neural networks that

detect malicious traffic are vulnerable to adversarial examples) and its importance, we

now give a succinct overview of our contributions.

1. We implement several different neural networks that differentiate malicious

traffic from benign traffic for the UNSW-NB15 [53] and CSE-CIC-IDS2018

datasets [4] and that differentiate malware traffic from benign traffic for the

USTC-TFC2016 [75] dataset. Using our methodology, we manage to achieve
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98%, 99.89%, and 99.80% on the UNSW,USTC, and CSE-CIC datasets respec-

tively.

2. We implement two different architectures to show that more fine-grained analysis

of these datasets can be conducted in order to differentiate different types of

malicious/malware flows.

3. We illustrate our two best models’ vulnerability to both black-box and white-

box types of attacks. We particularly show that an adversary could potentially

transform over 40% of the benign flows in a test into appearing malicious within

the USTC dataset using black box methods. This same adversary could also

transform at least 10% of malicious flows into appearing benign using only black

box methodologies in all considered datasets. For the CSE-CIC dataset we can

transform over 75% of the malicious flows into appearing benign. We then fur-

ther illustrate how a more knowledgeable adversary in a white-box setting could

improve upon these results to transform over 30% of UNSW malicious flows into

appearing benign, over 80% of USTC’s benign flows into appearing malicious, and

5% of CSE-CIC benign flows into appearing malicious. We present attacks of this

sort for both the l1 and l2 norms.

4. We illustrate targeted attacks on our networks to show that a knowledgeable

adversary could attack single statistical features in order to create adversarial

examples. We then correlated these changes in features to real malware.

5. We showcase how differential privacy can be used in order to make models robust

to adversarial examples. Namely we illustrate that adding noise whilst training

and using a multiple iteration prediction scheme can make our models more robust

to adversarial examples. We illustrate this defence for both the l1 and l2 norms.
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6. We show that other methods of adding differential privacy using Poisson subsam-

pling to our models can lead to differing and sometimes better results.

7. We show that a metric used within our differential privacy approach can be used

a form of prioritization for investigating malicious flows.

8. We finally show that using our approach, an adversary would be forced to change

a given malware by a large amount in order to create an adversarial example

against a given model. As a result, this largely becomes a defunct option for an

adversary.

This is the first work that we are aware of that incorporates differential privacy for

robustness to the area of malware detection. Now that we have outlined our contri-

bution, we now give the background necessary in order to be able to understand our

work.
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Chapter 2

Background and Related Work

In this chapter, we give an overview of the background necessary for this project.

This project encompasses the areas of network security, neural networks, adversarial

examples, and differential privacy, and data-analysis algorithms. We shall go through

each of these areas in turn.

2.1 Network Security: Malware, Network Attacks,

and Network Traffic Analysis

Malware (malicious software) violates users’ privacy, steals passwords, and even en-

crypts users’ files for ransom. Network-based attacks like denial of service attacks,

botnets, and worms have also wreaked havoc by preventing access to websites and

shutting down services. These types of attacks often make use of online services, per-

sonal computers, and mobile devices to attack the integrity of systems. Furthermore,

the technology for creating malware and network attacks have proliferated as they be-

come accessible through the internet. This has all exacerbated the problem of finding
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a solution to detecting and preventing network and malware attacks. A lot of this

research has focused on network traffic analysis.

By analysing network traffic, network operators can detect and minimize the dam-

age perpetrated by malware and network attacks. As a result, many different types

Intrusion Detection Systems (IDS) have been developed. Traditional methods have

long focused on signature-based approaches [62]; however, this inherently means that

this anti-virus software will be unable to detect malicious network flows if they change

their behaviour. Increasingly, though anomaly-based approaches have supplemented

signature-based attacks within IDS systems. These network-based and host-based ap-

proaches check, and match known patterns of types of malicious traffic patterns. The

advantage of this approach is that these systems can detect and thus help prevent un-

known attacks (this of course depends on collecting a large trove of appropriate data

on which to train data).

2.1.1 Malware and Network Traffic analysis

Network traffic data analysis can be broken down into two main categories: packet-

based and flow-based [39]. Flow-based analysis attempts to infer sensitive information

from communication patterns such as statistical patterns, packet timings, and packet

sizes. Packet based approaches attempt to learn sensitive information from headers and

packet payloads. Flow-based approaches are generally the more scalable and efficient

since they do not need to check the details of each packet. (Note for the rest of this

work, we consider flows to be bidirectional. This means that flows that have the same

interchange client and server IPs and the same client and server ports are part of the

same flow)

Packet-based approaches are complicated by the encryption of traffic. As a result

of this trend, most content-based network traffic analysis has been rendered infeasible.
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Traditional pattern matching cannot be readily applied to this problem. Furthermore,

given the scale of network traffic, much recent work has focused on the more efficient

and feasible area of network flow analysis [65]. Increasingly, a large amount of work

has gone into network-flow based approaches that use information like packet timings,

packet sizes, Transport Layer Security (TLS) handshake information, domain names

from Sever Name Indication (SNI), among a host of other information to characterize

flows.

As a result of these changes, detecting malicious network flows in encrypted flows

has risen in popularity. Recent works like Malalert [59] and Detection of Malicious

Traffic Using Benford’s Law [65] have made use of network-level traffic features in order

to detect and classify different types of network traffic. Bartos et al.’s [29] approach

also uses statistical features representations computed from network traffic to recognize

malicious behaviour. They manage to achieve a representation invariant to the most

common changes of malware behaviour by constructing a feature histogram for each

group of HTTPS flows. TrafficAV [71] also proposes a server-side approach using deci-

sion trees to detect Android malware. In addition, to the above approaches, Drebin et

al. [27] proposes a lightweight static analysis of network traffic for identifying malware

traffic from Android mobile devices.

2.1.2 Feature Extraction

In creating a feature set to analyse network flows, several different approaches have been

advocated. Manual feature involves expert defined features being extracted However,

increasingly with the advent of deep neural networks, automatic feature extraction has

been advocated as a means of avoiding this intensive and imperfect practice.
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Manual Feature Extraction

Manual feature extraction depends on a list of expert-defined features extracted from

network flow data in order to train models. Malalert [59] extracts statistical informa-

tion from flows based solely on the number of bytes transmitted. Relying on only five

statistical features they manage to achieve an F1 score of as high as 0.94 on a subset

of their considered data. In their methodology they extraction information such as

the minimum, maximum, mean, mean absolute deviation, kurtosis, skewness, standard

deviation, variance, and various quantiles from byte information. Similarly, Kheir et

al. [45] use high-level network features available in NetFlow. Malclassifier [25] extracts

network flow behaviour during the malware’s various infection stages, and classifies traf-

fic based on that sequence behaviour. Lopez et al. [49] use packet timing information,

source ports, destination ports in order to classify flows as either malicious or benign.

To counteract the inability to read network packet information, Anderson et al. [26]

propose a data omnia approach. In this approach, they extend flow records to contain

all metadata about a flow, such as the unencrypted TLS handshake information and

pointers to contextual flows. They also correlate DNS responses with TLS flows based

on the destination addresses. Separately Anderson et al. also conduct a study of various

machine learning algorithms to understand their underperformance on this task. They

found that inaccurate ground truths and a highly non-stationary data distribution were

the two major factors in underperformance. They also found that feature engineering

by iterating on the initial feature set was key in increasing performance. Finally, Dis-

closure [31] extracts flows information, client access behaviour, and temporal patterns

from NetFlow data to detect botnets.

10



Page: 11—Chapter 2 : Background and Related Work

Automatic Feature Extraction

Despite the large amount of work that has gone into detecting malicious network flows

using predefined features, several works have focused on extracting network flow in-

formation directly from the encrypted network information. In this way, they do not

have to work about losing information from only putting in these engineered feature

sets. Wang et al. [76] use raw flow data from given flows in order to classify the flows

as either malicious or benign. Prasse et al. [60] also used a LSTM neural network to

detect malware in encrypted traffic, beating the previous state-of-the-art random-forest

method.

Semi-Automated Feature Extraction

Semi-automated feature extraction involves making use of statistical features and au-

tomatic feature extraction. Vu et al. [68] make use of statistical data while also making

use of header information for automatic feature learning. Bhat et. al. [30] also make

use of spatial-temporal information in an 18-layer Resnet while also inputting seven

different statistical features.

Conclusion

Detecting malware in encrypted network flows has a rich and developing background

literature. We shall now explore the machine learning and deep learning algorithms that

have been used in network traffic analysis, malware detection, and more specifically in

this work.
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2.2 Machine Learning, Neural Networks, and Adver-

sarial Examples

In this section we give an overview of machine learning, neural networks, and adversarial

examples. Neural networks are often used as classification tools and in this work, we use

them as a means of differentiating different types of network flows. Thus, in this section,

we firstly give background on the network that we used as well as some methodologies

we used with neural networks to improve classification in this work. Secondly, we give an

overview of adversarial examples. Adversarial examples arise from small perturbations

in input that result in drastically different classifications.

2.2.1 Definition of Classification with Machine Learning

Machine learning is a means of analysis where systems learn, identify, and make de-

cisions based on data. Machine learning furthermore is often used for classification.

Here, we give a formal definition of the classification problem for machine learning.

In this problem, we are given a database D with N tuples each having a feature set

x ∈ [−1, 1]d and a ground truth label y ∈ ZK with K possible categorical outcomes.

Each y is a one-hot vector of K categories y ∈ y1, ..., yK . A single true class label yx ∈ y

given x ∈ D is assigned to only one of the K categories [11].

A machine learning model with parameters θ on a d-dimensional input x then

is a function f : Rd → RK that maps input to a vector of scores f(x) =

{f1(x), ...fK(x)}s.t.∀k ∈ [1, K] : fk(x) ∈ [0, 1] and ΣK
k=1f(k) = 1. The class with

the highest score value is then selected as the predicted label for the input x, denoted

as y(x) = maxk∈Kfk(x) [11]. A model is said to correctly label a single instance x if

y(x) = yx or that the predicted labels is equal to the ground truth label. Otherwise, the

system is said to incorrectly classify the instance x. In a binary system that identifies
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malicious flows (port scans, botnets, backdoors, etc), this is such that benign flows are

labelled as benign and that malicious flows are labelled as malicious. Similarly, in a

multi-class system with K labels, this is such that a given instance x is assigned the

correct label within all K labels.

2.2.2 Machine Learning: Random-Forests

Random forests are a combination of tree predictors such that each tree is initialized

from the values of a randomized vector sampled independently from a given distribu-

tion [32]. Specifically, each tree predictor is a series of decisions that are used to perform

finer and finer grained analysis (i.e. Is this object a fruit? Is this fruit round? Is this

fruit red? Is this fruit an apple?). Random forests thus consist of many individual

decision trees that act as ensembles in order to make a decision. Each decision tree

reports a class prediction and the class with the most votes is the model’s predictions.

Each of these trees is initialized differently and acts independently, leading to robust

predictions. For more information on random forests see [32].

2.2.3 Neural Networks: Multi-layer Perceptrons

Multi-layer perceptrons (MLP) are a class of feed forward neural networks. MLPs

consist of input layer, one or more hidden layers that extract features, and an output

layer. Each hidden layer within an MLP is composed of multiple nodes that consist of

a linear function composed with a nonlinear activation function [70].

f(x) = σ(W · x+ b)

where σ(·) is the nonlinear activation function (i.e. RELU(x) or tanh(x)). The final

layer outputs the result of the last hidden layer by usually putting the output through

a SoftMax layer that gives a set of probabilities for each class.
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2.2.4 Convolutional Neural Network

Convolutional neural networks (CNN) are particularly excellent at extracting ’strong

signals’ from data and thus are often used in classification [30]. CNNs utilize layers with

convolving filters that are applied to local features and thus extract more complicated

features from these local features, incorporating them in different ways. Convolutional

layers accomplish this by making use of an input translation invariance (i.e. features

appearing in multiple places). This allows locally connected feature convolve over the

entire feature map. Pooling layers are often used after convolving layers within CNNs.

Pooling layers combine adjacent outputs from feature maps and output the maximum.

In this way, pooling layers down sample convolutional layers in order to the strongest

signals.

Finally, fully-connected layers are the end of networks are dense layers that have

every output neuron of the last layer as input to each neuron in the current layer. In

most CNNs a SoftMax layer in then used as the final layer to output a probability

distribution over the possible classes.

Dilated Causal Convolutions

While training CNNs, the receptive fields for the convolutional layers are often fairly

small. For example, in the model used within this work, the receptive field for each

convolutional layer is only 3. For long-term temporal understanding in CNNs, dilated

convolutions are often used. Dilated convolutions are convolutions that skip inputs at a

given dilation rate. Dilations thus allow networks to take a coarse and wider view of the

network. For time-data specifically, this allows a better understanding of relationships

amongst the data without increasing the number of parameters and the training cost.
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Figure 2.1: Example of dilated causal
convolution with dilation rate of 1.

Figure 2.2: Example of dilated causal
convolution with dilation rate of 2.

Dilated causal convolutions are often paired as in Bhat et al. [30] with causal convo-

lutions and padding. Causal padding restricts every neuron to look only at the previous

time-steps when performing the convolutions.

2.2.5 Adversarial Examples

A major issue with using neural networks within this domain is that they are weak to

adversarial examples; an adversary trying to fool a neural network can easily do so.

Adversarial examples are derived from small perturbations that are seemingly imper-

ceptible, but that cause the classifier to predict a wrong label. Adversarial examples can

be generated in a variety of ways. One of the most popular fast gradient sign method

can achieve a 90%+ misclassification rate against many classifiers [41]. In this section,

we first define adversarial examples formally, explain why they exist, and then explain

the various sorts adversarial attacks.

Formal Definition: Adversarial Examples

We begin by formally defining adversarial examples. For adversarial attacks, for a target

model f and inputs (x, yx), the adversary’s goal is to find an adversarial example

xadv = x+α where α is a perturbation induced by the adversary. The α chosen by the

adversary is such that

1. xadv are close according to a chosen norm

2. the model misclassifies xadv s.t. y(xadv) 6= y(x).
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The definition of adversarial examples requires our use of a distance metric to quantify

the similarity between two sets of features. There are four widely used distance metrics

that are used in generating adversarial examples we will consider in this work. Each of

these four metrics are Lp norms.

Lp norms are written as ||x− x′||p, where the p-norm || · ||p is defined as follows:

||v||p =

(
Σn
i |vi|p

) 1
p

(2.1)

The four metrics are then as follows:

1. L0: This distance metric measures the number of features xi such that xi 6= x′i in

two images x and x′. This thus corresponds to the number of features that have

been altered in a given image.

2. L1: This distance metric measures the sum of the absolute value of difference

between each feature xi and x′i.

3. L2: This distance metric measures the Euclidean (root-mean squared) distance

between two images x and x′. The L2 norm can remain relatively small while

changing many features

4. L∞: This distance metric measures the maximum change to any of the features

such that L∞ = max(|x1 − x′1|, ..., xn − x′n|).

Within this work, we focus specifically on the L1 and the L2 metrics.

Why Do Adversarial Examples Exist?

Adversarial examples were first described by Szegedy et al. [66] in 2013. Since then there

has been a plethora of research in generating and protecting against these attacks. In
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addition to this literature, in the last two years, there has been significantly work in

determining why adversarial examples actually exist.

In the simplest argument, a neural network maps its input to a multi-dimensional

space that it then divides with hyperplanes into regions that belong to given classes.

More formally, a neural network gives m hyperplanes of the form Σn
j=1a

k
i xj + bi for

i = 1, ...m which split Rn into cells [63]. If we denote by M the m× n matrix whose

entries are the aji coefficients and by B the column vector whose entries are the bi

constants, then each cell in the partition is defined by a particular vector S of m±

signs, and consists of all the points x in Rn for which Mx+B is a column vector of

m size whose signs are as specified in S [63]. The maximal possible number of cells is

then Σn
i=0

(
m
i

)
[63]. The predictor is then able to associate labels (malicious vs benign

to the cells). However, because even a small number of hyperplanes is enough to divide

Rn into a huge number of cells, there exists a hodgepodge of cells surrounded by other

different class cells. Given the complexity of neural network, a small perturbation is

thus sometimes enough to move a cell in one class to another cell of another class. This

is true then of every cell. For a clear picture of what this looks like see Fig. 2.3

Put in another way, due to the complexity of how neural networks differentiate

different classes, it often learns insignificant details in data causing small perturbations

of these details to drastically change classifications. The above explanation however,

is not the full picture and only gives an intuitive understanding. Recently in 2019,

Shamir et al. [63] showed that targeted attacks for the l0- norm always exist due to the

geometry of Rn. For more details see Shamir et al [63].

We now give a brief overview of several different adversarial example algorithms

that have been proposed in the last five years.
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Figure 2.3: Example of classification cells that neural networks build [63].

Fast Gradient Sign Method

The fast gradient sign method proposed by Goodfellow et al. [41] is the most basic form

of creating adversarial examples. Let θ be the parameters of a given model, x the input

to the model, y the ground labels associated with x, and J(θ,x,y) the cost function used

to the train the neural network. If the cost function is linearized around the current

value of θ, the optimal max-norm constrained perturbation is given by η = εsign(∇x

J(θ,x,y)) .The epsilon value refers to the magnitude of the change possible on each of

the features within x. FGSM thus works by finding adversarial perturbations which

increase the value of the loss function.
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Projected Gradient Descent/Basic Iterative Method

The basic iterative method is an extension of FGSM [46]. It applies FGSM multiple

times with small step sizes:

Xadv
0 = X

Xadv
N+1 = ClipX,ε

{
Xadv
N + αsign(∇XJ(Xadv

N , ytrue))
}

where ClipX,ε(M) denotes the element wise clipping of M, with Mi,j clipped to the

range of Xi,j − ε,Xi,j + ε. The value of α is the value by which each feature is changed

on each step. The number of iterations is a constant that can be changed for better

accuracies.

This method is essentially what is also known as projected gradient descent (PGD).

A variation of this type of attack that we consider in this work restarts the projected

gradient from many points in a linf-ball surrounding individual attack points. This

allows PGD to explore a larger part of the loss landscape [51].

One-step target class method

A different method than FGSM and the basic iterative method is the one-step target

class method. This method seeks to maximize the probability (ytarget|X) of some specific

target class ytarget that is different that the ground label. In a neural network with cross-

entropy loss, this leads to the following formulation of the one-step target class method

Xadv = X − ε(∇XJ(X, ytarget))

Kurkani et al. [46] recommend using the least likely class as the target when using this

methodology in a multi-class setting.
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Iterative least-likely class method

The iterative least-likely class method is an extension of the one-step class method and

is noted for being generally highly effective [46]. It runs multiple iterations of the one

step class method:

Xadv
0 = X

Xadv
N+1 = ClipX,ε

{
Xadv
N + αsign(∇XJ(Xadv

N , yleastlikely))
}

where ClipX,ε(M) denotes the element wise clipping of M, with Mi,j clipped to the

range of Xi,j − ε,Xi,j + ε.

Sparse l1 Descent

The sparse l1 descent attack was proposed by Tramer et al. [67] in 2019. While the

projected gradient descent algorithms proposed above are efficient for l1 attacks, they

are highly inefficient in producing strong l2-perturbations. This is because in the l1-case,

the steepest descent is only a unit vector for a given feature. As a result, each iteration

of the attack only updates a single feature r. In contrast the sparse l1 attack has finer

control over the sparsity of the update steps and updates multiple features at a time.

Tramer et al. propose for q ∈ [0, 1], let Pq(|g|) by the qth percentile of |g| where

|g| is the gradient of the loss. Trammer et al. then set ei = sign(gi) if |gi| > Pq(|g|)

and 0 otherwise. Tramer et al. then normalize e = [ei, ....eR] to the unit l1-norm.

For q � 1/d, this method thus updates many indices of r at once. Sparse l1 descent

also introduces an optimization for clipping by ignoring gradient components where

the step cannot increase or decrease (i.e., the update would cause the feature to move

beyond the input domain. By performing these optimizations, the sparse l1 descent

attack vastly outperforms projected gradient attacks and is competitive with the more
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expensive elastic net attacks (we do not discuss this attack here). For more details on

the sparse l1 attack see Trammer et al [67].

HopSkipJump Attack

The HopSkipJump based attack is a decision-based adversarial attack that generates

adversarial examples based only on the output labels returned by the targeted model.

This attack is optimized for the l2 and the linf similarity metrics.

Decision based attacks work mainly using rejective sampling. In this setting, a fea-

ture vector firstly is initialized that lies in the target class. At each step a perturbation

is sampled from a given distribution that reduces the distance of the perturbed image

to the original feature vector. If the perturbation keeps the image in the target class,

the perturbation is kept otherwise the perturbation is dropped [34].

The HopSkipJump Attack combines this decision with the problem of zero-order

optimization. Zero-order optimization is the problem of optimizing a function f based

only on access to function values f(x).

We now give a brief overview of how hop-skip-jump’s optimization framework for

targeted attacks. For a more detailed view on the iterative algorithm for given lp-metrics

see Chen et al. [34]. The first component is a discriminative function F : RK → Rm

that accepts an input x ∈ [0, 1]d and an output y ∈ ∆m := {y ∈ [0, 1]|ΣK
c=1 = 1}. The

output vector y = F1(x), ..., FK(x) is then a probability distribution over the label set

[m] = 1, ..., K. As usual, the class with the maximum probability is then the assigned

class label. A targeted attack then seeks to change the original assigned label c to a

pre-specified label c∗ ∈ [m] \ c. More formally this can be defined using the function

Sx∗ : Rd → RK s.t.:

Sx∗(x
′) := Fc∗(x

′)−maxc 6=c∗Fc(x′)

21



Page: 22—Chapter 2 : Background and Related Work

A perturbed image x′ is then a successful attack if and only if Sx′(x′) > 0 and the

boundary between successful and unsuccessful perturbed images is

bd(Sx′) := {z ∈ [0, 1]d|Sx′(z) = 0}

Finally, the HopSkipJump attack defines as an indicator a Boolean valued function

Φx′ : [0, 1]→ {−1, 1} where Φx′(x) = 1 when the adversarial example is successful and

Φx′(x) = −1 when it is unsuccessful. The HopSkipJump attack can then formulate the

attack as minimizing minx′(d(x, x′) such that Φx′(x) = 1. The HopSkipJump attack

can then be formulated as generating a sample x′ by only querying the classifier C

alone.

Black-Box Attack Via Substitute Model Training through Data-Augmentation

We now give a brief overview of a means of performing black-box attacks via substitute

model training on neural networks.

In this framework, an adversary, as in the Hop Skip Jump attack, seeks to craft

inputs misclassified by the machine learning model by only accessing the labels assigned

to any chosen input x. The adversary seeks to do this by generating a fake dataset

FD and then observing how the original model labels the data. A substitute model

S is then trained using this synthetic data and the labels obtained from the original

model. By then running an adversarial attack against the substitute model, a portion

of adversarial examples are expected to be transferable between the architectures.

Substitute Model Training: In Papernot et al. [56], it was found that the sub-

stitute deep neural network architecture has ’relatively little impact on the success of

the attack’. For this reason, here we focus on how the synthetic dataset is generated.

The heuristic outlined by Papernot et al. [56] involves identifying the input areas

in which the model’s output varies. Once these areas are identified, more input-output

pairs are generated in this vicinity to capture how the output of the original model
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Figure 2.4: Flow of how black-box model is trained, and adversarial examples are
developed. Figure taken from [56].

varies. These areas are identified using the substitute models’ Jacobian matrix, which

is evaluated at several input points x. More specifically, an adversary determines how

the sign of the Jacobian matrix corresponds to the label assigned to the x. To obtain

a new fake datapoint, a parameter λ is multiplied by the sign of the Jacobian and this

is added to the original x. Papernot et al. [56] calls this methodology Jacobian-based

Dataset Augmentation.

2.2.6 Defences against Adversarial Examples

Within the literature, there is a host of different protections that have been proposed

to make models robust to adversarial examples. Unfortunately, each of these defence

has been almost immediately defeated in turn. As previously described, adversarial

examples are an inherent aspect of neural networks. Here, we give a brief overview

of the different methods that have been proposed to make models more robust to

adversarial examples.

23



Page: 24—Chapter 2 : Background and Related Work

Increasing the Capacity of the Model

Madry et al. [51] found that increasing the capacity (the amount of neural network

parameters) can make a model more robust to adversarial examples (only for one-step

perturbations).

Adversarial Training

Another method that has been proposed is using adversarially produced examples while

training [46]. This is known as adversarial training. These adversarial examples are

usually produced using the Fast Gradient Sign Method in combination with other ad-

versarial attack methods. This methodology, however„ often causes the model to overfit

to these adversarial examples. Kurkakin et al. labelled this as ’label leaking’ [46].

Defensive Distillation

Defensive distillation is a method that seeks to increase adversarial robustness inde-

pendently of any possible attack. Distillation works by first smoothing the SoftMax

layer of a trained model that is used for classification by a constant T . The new model

is then trained again but instead of using the original labels, the probability vectors

from the original model are used as soft targets [57]. This allows for a smoother loss

function. This type of approach can also be achieved by smoothing the labels.

Feature Squeezing

Another method that has been proposed is feature squeezing so that the features are

not sensitive to perturbations [77]. Feature squeezing works by smoothing features so

that many are mapped to the same value, making the model robust to noise. This

however makes the system less accurate as a natural consequence.
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Collaborative Multi-Task Training

Another method that has been proposed is based of collaborative multi-task training.

This approach first encodes training labels into pairs and then counter black-box attacks

by leveraging adversarial training using these pairs as the labels. The defence then

constructs a detector to identify and reject high-confidence adversarial examples that

can evade a black-box defence [69].

All the above methods do not provide provably robustness protection against

adversarial examples. Namely there is no mathematical reason why they should be

robust to attacks. We now however, present differential privacy, which can be used to

provide provably robustness to adversarial examples.

2.3 Differential Privacy

Differential privacy is a means of constraining the information disclosure of individual

members of a database when it is acted upon by an algorithmA [40]. In the formulation

of differential privacy, this randomized algorithm takes as input database d, performs

an algorithm A and outputs a value in the space O. This could be for example, taking

in a database of heights of all University of Oxford students, performing the algorithm

for averaging, and outputting this floating-point average. In order to prevent the in-

formation disclosure of the individual members, differential privacy mechanisms inject

noise into the database algorithm A before or after the algorithm’s operation in order to

obfuscate private information of individual members. There are several different types

of differential privacy. In the forthcoming section, we shall elaborate on the two types

of differential privacy that are relevant to our project.
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2.3.1 ε−DP.

A randomized algorithm A fulfils ε−DP with respect to a metric ρ if for any two if for

any two databases d and d’ where ρ(d, d′) ≤ 1, all outputs O ⊆ Range(A) obey [40]:

Pr[A(D) = O] ≤ eεPr[A(D′) = O] (2.2)

In the above equation, ε > 0 controls the amount by which the distributions by D and

D′ may differ. The smaller the value of ε > 0, the stronger the privacy guarantee. For

small values of ε, differential privacy guarantees creating a small perturbation in the

database cannot change the output of the algorithm A by a large value.

Note that differential privacy can be applied to general metrics ρ(D,D′) <= 1 where

ρ can be any lp-norm [47].

2.3.2 (ε, δ)−DP.

A randomized algorithm A fulfils (ε, δ)−DP with respect to a metric ρ if for any two if

for any two databases d and d’ where ρ(d, d′) ≤ 1, all outputs O ⊆ Range(A) obey [40]:

Pr[A(D) = O] ≤ eePr[A(D′) = O] (2.3)

Here ε > 0 and δ ∈ [0, 1] and as with ε−DP , for (ε, δ)−DP , the smaller the values of

ε and δ, the greater the privacy guarantee. δ here is a broken probability.(ε, δ) − DP

is thus a relaxation of ε−DP , allowing for more graceful increases in privacy loss, and

thus is known as differential privacy with advanced composition.
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2.3.3 Privacy amplification via subsampling

Subsampling is often used in the design of differential privacy mechanisms [28]. The

’privacy amplification by subsampling’ principle ensures that a differentially private

mechanism acting on a random subsample ensures higher privacy guarantees than for

an entire population. Particularly in machine learning, where quantifying privacy loss is

of the essence, subsampling has become the basis of several different algorithms. Each

type of subsampling (i.e. sampling without replacement, sampling with replacement,

Poisson subsampling) within differential privacy provides different privacy guarantees.

In particular in this work, we focus on one of the of most well-known: Poisson subsam-

pling. For more information for concerning the other types of subsampling see Balle et

al. [28].

Poisson subsampling

Poisson subsampling with respect to remove/add-one relation is one of the most stud-

ied forms of subsampling within the differential privacy literature [28]. The Poisson

subsampling mechanism Spoγ : 2U → P (2U) takes a set x and outputs a probability

distribution w = Spoγ (x) for a sample y. This distribution is supported on all set y ⊆ x

given by w(y) = γ|y|(1− |γ|)|x|−|y|. This is equivalent to adding to y each element in x

with probability γ [28].

Given a differentially private algorithm A with a given privacy value ε, the privacy

profile of the subsampled algorithm can be bounded as follows:

Let A′ = AS
po
γ . For any ε ≥ 0, the new privacy value of the new algorithm is

ε′ = log(1 + γ(eε − 1)). For the values that we are considering, this value is nearly

ε′ = γε We will not give the full proof for this result, but for more details see Li et

al [48].
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2.3.4 Differential Privacy Properties

Differential privacy has become increasingly popular not only due to the guarantees that

it provides on the output of any algorithm A but also due several theoretical properties

that have enabled a rich literature to evolve.

Post-processing property

The post-processing property states that any computation to the output of an (ε,δ)-DP

algorithm remains (ε,δ)-DP [47]. Note that because this property holds for(ε,δ)-DP, it

also holds for (ε,0)-DP /ε-DP. This property is explicit in the definition of differential

privacy. It states that after a differentially private algorithm has been run on database,

no other computation can recover the details hidden by the differentially private noise

that was added. (Note that this a key property upon which this work rests.)

Expected Output Stability Bound

The expected value of an (ε,δ)-DP algorithm with a bounded output is not sensitive

to small changes in the input [47]. Because the expected output stability bound is

more implicit in the definition of differential privacy and was only formally provided by

Lecuyer et al. [47], we provide the proof of this property here. (Note that this is the

second property is the crux on which much of this work depends. We use this property

in order to prove the robustness our neural networks to adversarial examples.)

Definition: Suppose a randomized function A, with bounded output A(x) ∈ [0,b],

b ∈ R+ satisfies (ε,δ)-DP. Then the expected value of its output meets the following

property:

∀α ∈ Bp(1) · E(A(x)) ≤ eεE(A(x+ α)) + bδ

The expectation is taken over the randomness in A [47].
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Proof : Consider any α ∈ Bp(1) and let x := x+ α. We write the expected output

as:
E(A(x)) =

∫ b
0
P (A(x) > t)dt

Applying the equation for (ε,δ)-DP we then see that:

E(A(x)) ≤ eε(
∫ b

0
P (A(x) > t)dt) +

∫ b
0
(δ dt)

= eεE(A′(x)) +
∫ b

0
(δdt)

Since δ is a constant
∫ b

0
(δdt) = bδ.

2.4 Differential Privacy in Machine Learning

Differential privacy has increasingly been used in machine learning in order to protect

the sensitive information on which models are often trained. Instead of trying to learn

the characteristics of individual members of a dataset, differential privacy forces ma-

chine learning algorithms to learn general characteristics about the dataset through the

insertion of random noise [43].

Algorithm 1 Add Noise
1: Training Data Input(X, y)
2: #1 Add noise to training data X: Input Perturbation
3: #1.5 Subsample training data (Must be conjunction with noise)
4: Result Model parameters θ
5: θ ← Init(0)
6: J(θ) = 1

n

n

i=1
l(θ,Xi, yi) + λR(θ) + β

7: for epoch in epochs
8: #2 Add noise to gradient: Gradient Perturbation
9: θ = θ − η(∇J(θ) + β)

10: end for
11: #3 Add noise to output: Output Perturbation
12: return θ + β

As seen in Algorithm 1, there are several places where noise can be added to machine

learning algorithm in order to add differential privacy to its calculation. Noise can be
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added directly to the input X to get an Input perturbation, to the noise gradient in

order to get a Gradient Perturbation, and to the output of the algorithm in order to

achieve an Output Perturbation. In addition to these three mechanisms, the input can

be subsampled in order to minimize the privacy parameter used. This only gives limited

examples of ways to achieve differential privacy, in machine learning; in addition to the

above, other methods include the sample aggregate framework [54], the exponential

mechanism [52], and the teacher ensemble mechanism [58].

2.4.1 Differential Privacy and Adversarial Examples

While differential privacy has been mainly used to protect sensitive training data from

exploitation, in the recent work of Lecuyer et al. [47], differential privacy was used in

a rather novel way. Instead of bounding the amount of privacy loss that individual

training data members could anticipate, Lecuyer et al. use differential privacy in order

to construct a lower limit on the amount of perturbation necessary in order to induce

a change of classification for a neural network. In this way, by providing such a lower

limit, Lecuyer et al. [47] manage to provide a means of certifiably evading adversarial

examples on the neural network. In simple terms, there method ensures that small

changes in the input of a given machine learning classifier (such as including a few

more packets within the malware), will not change the prediction.

Lecuyer et al.’s work is completely different than how differential privacy is ordinarily

used within machine learning network. Ordinarily, the goal of differential privacy within

machine learning is to learn general characteristics while ensuring that public release

of the model parameters is guaranteed to reveal non-significant information about the

training set. In contrast Lecuyer et al. focus of creating a robust predictive model, where

a small/insignificant change in the input does not result in a different classification. This
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is such that Lecuyer et al.’s training method is not differentially private, and it does

not ensure the differential privacy of the training data.

2.4.2 Satisfying (ε,δ)-differential privacy for robustness

Here will elaborate on how in practice differentially-privacy for robustness is added to

models.

Differential Privacy Noise Layer

A noise layer is inserted into a neural model using either the Gaussian or Laplace dif-

ferential privacy mechanism. These both involve inputting either Gaussian or Laplace

noise respectively at each one of the features inputted into the model. Laplace Mech-

anism: noise(∆, L, ε, δ) is the Laplace mechanism with mean zero and standard de-

viation
√

2∆p,1L/ε; this gives (ε, 0)-DP. L in above mechanism denotes the size of the

p-norm attack. Note that in most calculations, the ∆ = 1, where ∆ is the sensitivity

of the model, after normalization.

Gaussian Mechanism: noise(∆, L, ε, δ) has the Gaussian mechanism with mean

zero and standard deviation
√

2 ln 1.25
δ

∆p,2L/ε; this gives (ε, δ)-DP for ε ≤ 1. L in above

mechanism denotes the size of the p-norm attack. Note that in most calculations, the

∆ = 1, where ∆ is the sensitivity of the model, after normalization.

Depending on where noise is inserted in the model, the sensitivity ∆ of the other

layers will matter. This is because if noise is inserted following a neural dense calcu-

lation, adding noise only equivalent to slightly perturbing the weights of the model.

As a result, the rest of the model would immediately compensate for this adjustment.

For this reason, unless the noise is inputted on the image itself, the sensitivity of the

pre-noise layer must be adjusted in order to prevent this from occurring.
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As in Lecuyer et al. [47], the sensitivity of a function or layer f can be defined as the

maximum change in the input given some lp norm metric for the input and the output

(the p-norm and the q-norm respectively).

∆p,q = ∆f
p,q = maxx,x′:x 6=x′

||f(x)−f(x′)||
||x−x′||

Computing the sensitivity of the pre-noise function f, as stated before, depends on

its placement in the network. The placement of the layer has this flexibility because

the post processing property of differential privacy guarantees that the output after

this layer will remain differential private. We will now explain how to calculate the

sensitivity for two places in the network that we considered in this work.

Option 1: Noise Directly on the Features: By placing noise directly on the

features, the calculation of the sensitivity is fairly trivial. Here the pre-noise function

f is just the identity function and as a result the sensitivity for all norm combinations

is just 1.

Option 2: Noise after 1st Layer: Deep neural networks often start with a fully

connected layer or a convolutional layer (in our work, a fully connected layer is used,

see Chapter 4 for more details). We will now go into how the sensitivity of a fully

connected layer is calculated.

A fully connected layer can be thought of as a matrix multiplication with valuesW ∈

Rm,n. The sensitivity is then the matrix norm defined as: ||W ||p,q = supx:||x||p≤1 ||Wx||q.

By definition of linearity ||Wx||q
||x||p ≤ ||W ||p,q, which means that ∆p,q = ||W ||p,q. As a result

of this, ||W ||1,1 is the maximum 1-norm of W ’s columns, ||W ||1,2 is the maximum 2-

norm of W ’s columns, and ||W ||2,2 is the maximum singular value of W . In the rest

of this work, we only consider 1-norm and 2-norm attacks as inf-norm are difficult to

bound, so we do not delve into how to solve for the sensitivity.

Option 3: Noise in Auto-encoder: Noise can also be placed before a deep neural

network in a separately trained auto-encoder. Auto-encoders are trained to predict its
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own input. Often used to de-noise inputs, auto-encoders can be trained to incorporate

differential privacy. Auto-encoders can use either of the previous two options whilst

training. Once completed, sensitivity is calculated in the same way as the above options

After training, this auto-encoder can be stacked before a predictive deep neural network

for classification. Because of the post-processing property of differential privacy, the

stacked network is also differentially private. This approach in particular allows for the

separate training of the deep neural network and the auto-encoder, relieving a great

deal of potential experimental work (see Chapter 4 for more details). The noise in the

autoencoder can be placed within it using two previous options.

Once the sensitivity is calculated, the noise layers leverage the Laplace and Gaussian

mechanism as follows. During training and prediction, the noise layer computes f(x) +

Z where Z = (Z1, ..., Zm) are random variables form a noise distribution defined by

noise(∆, L, ε, δ) and f(x) is the pre-noise computation.

2.4.3 Differential privacy robustness

We now give an overview of how differential privacy relates to the robustness of training

output. We show that a DP scoring function can be constructed such that given an

input, the predictions made with respect to features of the input are differentially

private and thus robust to perturbations in the input. By relying on the Expected

Output Stability Bound property of differential privacy, we can give stability bounds on

the expected output of the DP scoring function. This property can thus give rigorous

conditions for robustness to adversarial examples.

More formally, we regard feature values of an input x as the records in the database

and consider a randomized scoring function A that on an input x. We then say A

maps x to a vector of scores A = {A1(x), ...AK(x)}s.t.∀k ∈ [1, K] : Ak(x) ∈ [0, 1] and

ΣK
k=1A(k) = 1 [47]. The model’s original scoring function A can then transformed into
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a randomized (ε, δ)−DP scoring function A(x) using a differential privacy mechanism.

We then say that A is an (ε,δ)-feature level differentially private function if it satisfies

(ε,δ)-DP for a given metric (i.e. l1,l2). This is functionally equivalent to saying that the

algorithm A satisfies some form of differential privacy. The Expected Output Stability

Bound then implies bounds on the expected outcome of an (ε,δ)-DP scoring function.

This is such that:

Suppose a randomized function A satisfies (ε,δ)- feature differential privacy to a

p-norm metric, and where A(x) = {A1(x), ...AK(x)}s.t.∀k ∈ [1, K] : Ak(x) ∈ [0, 1] and

ΣK
k=1A(k) = 1 then:

∀k ∀α ∈ Bp(1) · E(Ak(x)) ≤ eεE(Ak(x+ α)) + δ (2.4)

This derives directly from the Expected Output Stability Bound.

If a prediction procedure f then allows the expected value E(A(x))of A(x) is be

calculated, then this can be used to provide robustness guarantees and labelling. This

is because the expected value is the value x’s true probability vector from which to pick

the maximum argument and thus the classification [47].

Finally, we give the robustness condition: Robustness Condition Suppose a sat-

isfies (ε,δ)- feature differential privacy with respect to a p-norm. Then for any input x,

if for some k ∈ K [47],

E(Ak(x)) > e2εmaxi:i 6=kE(Ai(x)) + (1 + eε)δ (2.5)
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then the multiclass classification model based on label probability vector y(x) =

(E(A1(x)) ...E(Ak(x))) is robust to attacks of α of size ||α||p ≤ 1 on input x.

We repeat the proof presented by Lecuyer et al. [47] here for clarity. For more

information, see [47]. Proof: Consider any α ∈ Bp(1) and let x′ := x + α. From

Equation 2.4.3, we have that:

E(Ak(x)) ≤ eεE((Ak(x
′)) + δ (2.6)

E(Ai(x
′)) ≤ eεE(Ak(x)) + δ i 6= k (2.7)

Equation 2.6 gives a lower bound on E((Ak(x
′)) while equation 2.7 gives an upper

bound on maxi:i 6=kE((Ak(x
′)). Equation 2.10 implies that the lower of the expected

sore is higher that the upper-bound for the expected score that for any other label.

This then implies that the label is robust to perturbations. More completely [47]:

E(Ak(x
′)) ≥ E(Ak(x′))−δ

eε

≥ e2εmaxi:i 6=kE(Ai(x))+(1+eεδ−δ
eε

= eεmaxi:i 6=kE(Ai(x)) + δ

≥ eεmaxi:i 6=kE(Ai(x
′))

E(Ak(x
′)) > maxi:i 6=kE(Ai(x+ α))∀αBp(1)

2.4.4 Certified Accuracy and Robustness Procedure

We now give the full procedure to get certified accuracy on a particular example and

prove robustness to adversarial examples. Ordinarily, for a given input x to a model

with function A, the model predicts a label by picking the arg max of the SoftMax layer

or f(x). As noted before for our labelling, we need access to E(A(x)). As a result, in

this work, the prediction procedure differs significantly. As in Lecuyer’s et al. [47], the
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prediction is chosen by invoking the model function A(x) multiple to obtain an average.

Each time that A(x) is invoked, it is with an independent draw for the noise layer. This

allows a Monte Carlo estimation of the expected value for the prediction.

The Monte-Carlo method refers to algorithms that estimate a value based on sam-

pling and simulation. Given an instance X of a function problem, let f(X) ∈ R denote

the desired output. In our example, X/(A(x)) is the output of the model for an in-

put x and f(X) the average SoftMax value for the correct label. The average f(X)

received for multiple calls of an algorithm for an output X can be bounded using Cher-

noff bounds. Let X be the output of the algorithm and letting X∗ be the actual average

SoftMax. Note that E[X] = X∗ and that by the Chernoff bounds for ε ∈ (0, 1) [16].

P (|X −X∗| ≥ εX∗) = P (m|X −X∗| ≥ εmX∗) ≤ 2e
ε2mX∗

3 (2.8)

Thus, a bound for how far away the expectation is from the actual expectation is can

be reached. Note that probability that the expectation lies outside these bounds, can

be made arbitrarily small depending on the number of invocations m of the algorithm

A [16].

Once the E[X], is calculated using this Monte-Carlo method, new tighter η confi-

dence intervals are also calculated as in [47] that hold with probability η. These η

confidence bounds values can also be made arbitrarily small by increasing the number

of invocations of the prediction algorithm. Within this work, the η-confidence error

bounds are calculated using the Hoeffding inequality. Using the Hoeffding inequality,

with probability η the following holds:

E(A(x))lb = Ê(A(x))−

√
1

2n

2k

1− η
≤ E(A(x)) ≤ Ê(A(x)) +

√
1

2n

2k

1− η
= E(A(x))ub

(2.9)

36



Page: 37—Chapter 2 : Background and Related Work

where n is the number of invocations of the algorithm A, and k is the index of the

label (starting from 1) [16], [47].

We can now give the general robustness condition for full prediction algorithm taking

into account our use of a Monte-Carlo simulation for getting the value of E[A]

General Robustness condition Suppose a randomized function A satisfies (ε,δ)-

feature differential privacy with respect to changes of size L in p-norm metric. Letting

Eub(Ai(x) and Elb(Ai(x) be the η upper and lower bounds for a Mote-Carlo estimate,

then for any input x, if for some k ∈ K [47]

Elb(Ak(x)) > e2εmaxi:i 6=kEub(Ai(x)) + (1 + eε)δ (2.10)

The proof for this equation can be found in Lecuyer et al. [47]. Then in order to

determine the robustness, the following algorithm is used. Note that as previously

stated the Laplace and Gaussian mechanisms have noise standard deviations σ that

grow in ∆p,qL

zε
. For a given σ used at prediction time, we then solve for the maximum

Lxmax for which the robustness condition holds. This is such that, according the general

robustness condition [47]:

Lxmax = maxL∈R L s.t.

Elb(Ak(x)) > e2εmaxi:i 6=kEub(Ai(x)) + (1 + eε)δ AND either

• σ = ∆p,1/ε and δ = 0 (for Laplace)OR

• σ
√

2ln(1.25
δ

∆p,2L/ε and ε ≤ 1 (for Gaussian)(2.11)

37



Page: 38—Chapter 2 : Background and Related Work

Thus, if the robustness value is greater that the predefined value L, then we say

that given datapoint example x is robust to adversarial examples of size attack.

Robustness Certificate

In addition to being able to withstand attacks of up to a given size attack (for the

predefined fixed attack for which the model is trained) the returned robustness certificate

for each tested datapoint can actually has a more relaxed interpretation. The returned

robustness certificate is actually the maximum attack size for each input, against which

that particular datapoint is robust. The robustness size certificate incorporates the size

of possible adversarial attack Lattack as well as the η-confidence upper and lower bounds

to create a stability bound. This bounds the change an adversary could make on the

average score of a given label with a p-norm attack. This η value is thus also used to

construct a η-confidence upper bound and lower bound on the change an adversary can

make with a p-norm input change of up to Lattack [47]. With this robustness certificate,

if the lower bound of the label with the largest score is strictly greater than that of

every other label, then the input x is robust to arbitrary p-norm attacks of size Lattack.

This then is basically the calculated Lmax from the robustness calculation. This can

be seen most clearly in Fig. 2.5. Thus, every correct prediction has a given robustness

bound and each one can be different. For example, for a model trained to be robust to

attacks of size L = 0.1, some of the tested datapoints will have robustness certificates of

size 0.11 and others will have certificates of size 0.8. Furthermore, the failure probability

of this robustness certificate can be as small as one wishes, by invoking more calls of the

prediction algorithm. Despite the probabilistic nature of stability bounds, note that the

differential privacy aspect of this procedure is not probabilistic. Rather, this algorithm
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Figure 2.5: Example of how robustness is determined with a malicious flow example.
Here the malicious flow is certifiably robust due to the gap that exists between possible
probability labels for the benign label and the malicious label.

is probabilistic due to the Monte-Carlo simulation that must be conducted in order to

estimate the E[A(x)].
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2.5 Data Analysis Algorithms

Within this work, we used several data analysis algorithms in order to examine our

datasets. We give brief overviews of these algorithms here.

2.5.1 K-means clustering

K-means clustering is a partition-based clustering algorithm that assigns points x to

cluster in a D-dimensional Euclidean space.

Within the k-means formulation, k ’means’, the algorithm assigns points to µ1, ...µk

where each µi represents a given cluster. In the k-means, the goal is to minimize the

following objective over all possible partitions C1, .., Ck [11].

W (C1, ...Ck;µ1, ...µk) = Σk
j=1Σi∈Cj ||xi − µj||22

This problem is NP-Hard, but a greedy algorithm to optimize this objective was

developed.

Algorithm 2 Lloyd’s K-means clustering
1: Initialize µ1, ..., µk (centres of clusters)
2: repeat
3: for j=1,...,k do
4: Cj ←{ i| j = arg minj′||xi − µ

′

j||22}
5: end for
6: for j=1,...,k do
7: µj ←1

CjΣi∈Cjxi

8: end for
9: until convergence
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2.5.2 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique that aims

to give succinct representation of data whilst minimizing information loss. PCA allows

the uncovering patterns in data and leads to informative representations of data.

PCA works by first translating data vectors to be mean cantered. PCA then finds

an orthonormal family of k vectors that ’explain most of the variation of the data’.

Specifically, for each data point, PCA approximates each data point xi by a linear

expression with each orthonormal vectors. The optimal orthonormal vectors are the k

principal component. The first vector u1 is the direction of the greatest variance, u2 is

then the direction of greatest variance that is orthogonal to u1, etc. More specifically,

in order to find the principal component, singular value decomposition is applied to the

dataset. For more details, on how PCA in calculated see [44]

2.5.3 t-Distribution Stochastic Neighbour Embedding

t-Distribution Stochastic Neighbour Embedding is another dimensionality reduction

technique that is well suited for high-dimensional datasets. t-SNE models each high-

dimensional data point by either two- or three-dimensional point. The object of the t-

SNE algorithm is to model similar datapoints as nearby points and dissimilar datapoints

as distant with high probability [50].

The t-SNE algorithm has two main phases. t-SNE first calculates a probability

distribution over pairs of datapoints such that similar datapoints have a high probability

of being picked from the distribution while the dissimilar points have a low probability

of being picked from the distribution.
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pj|i =
exp(−||xi − xj||2/(2σ2

i ))

Σk 6=iexp(−||xi − xk||2/(2σ2
i ))

(2.12)

The similarity of datapoint xj to datapoint xi is the conditional probability pj|i,

that xi would pick xj as its neighbour, if neighbours were picked in proportion to their

probability density under a Gaussian cantered at xi [50].

pij =
pj|i+pi|j

2N

The bandwidth σi is chosen in such a way that the perplexity of these conditional

distributions equals a predefined chosen perplexity. As a result, the bandwidth has the

property the smaller values are used in denser parts of the data space.

After this stage, t-SNE then defines a similar probability distribution over the same

points in a lower dimensional map. It then attempts to the minimize the Kullback-

Leibler divergence between the distributions [50]. We will not go into these details

here. For more information about t-SNE see [50].
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Attack Scenario, Adversary Model,

and Proposed Defence

In this chapter, we give an overview of the adversary model that we considered within

this work. Specifically, we look at the goals of a potentially adversary and their mo-

tivations. We also look at the goals of the attacker’s victim or the defender and how

they might go about preventing attacks.

3.1 Scenario

We first outline the specific scenario that we try to protect against. In this scenario, an

institution/system has a neural network to detect malicious flows that have entered its

internal network. After designing and implementing this neural network by training it

on a series of example malicious and benign examples, the network is able to efficiently

and effectively differentiate malicious from benign flows. However, because of their

use of a neural network, this detection system is vulnerable to adversarial examples.

These adversarial examples are slight perturbations in training images/testing flows that

cause them to be misclassified. Within this setting slight perturbations are defined as
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changes that do not require a large change within the malware such that it becomes

non-functional. A potential adversary thus attempts to design a new malware that the

neural network is supposed to detect, but changes it in key ways, in order to allow this

new malware to evade detection.

3.2 Adversary Capabilities

Before giving details on how we designed our experiments and what parameters that we

used, we first give a formal definition of the adversarial model that was used within our

work. In order to perform this attack, the adversary could have several different types

of capabilities. In the first set of capabilities, the adversary could be in a black-box

setting. Here the adversary would only be able to check whether his designed malware

was actually detected by the institution’s malware detector. Besides this, the adversary

would not know any additional information.

In addition to the black-box setting, the adversary could gain access to the malware

detector’s weights and architecture. After discovering the weights, the adversary could

a design a particular malware that would be able to evade detection based on his

knowledge of the detector. This type of scenario is known as a white-box setting.

We assume in both of the above settings that an adversary has access to a reasonable

amount of computing power (i.e. of an individual or of a small corporation) and has a

reasonable amount of time to formulate her attack.

As shown in Section 2.2.5, adversarial examples are always keen to exist within

neural networks. We will show in the rest of this work that in both the white-box

and the black-box settings an adversary can easily design and implement malware by

taking advantage of the adversarial example weakness of neural networks. We take

this step further by also showing that targeted attacks on given features can also create
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adversarial examples against neural networks (i.e. by only raising the number of packets

forwards, one can fool a network as well). These are also considered white-box setting

attacks.

3.2.1 Adversary Goals

An adversary within both of these setting can have two different goals. The first goal of

an adversary is the most obvious: the adversary could take a specific malware and then

change it slightly in order to evade detection by the malware detector. The second goal

of the adversary is less obvious. For this goal, the adversary takes many benign flows

and changes them slightly in order to make them appear malicious. The adversary could

then do this on a large amount of flows. In this way the adversary could potentially

overwhelm the triage system of the network and make it nearly impossible for the

institution using the network to identify truly malicious flows from within the malware

labelled flows. Either of these types of attacks could be potentially disastrous.

3.3 Defence

Now that we have outlined the adversary’s capabilities, we now outline the purpose

of this work and the defence an institution could potentially implement do to prevent

these types of attacks. This is namely by adding differential privacy to the training and

prediction process, the institution can create stability bounds for a given prediction of

whether a flow is benign or malicious. By creating stability bounds about which a flow

is certified to be either benign or malicious, the attacked institution we imagine could

do the following. (1) When a flow is certified as benign with a high probability for a

given attack range, the institution can discard the flow information and move onto other

flows. (2) When a flow is certified as malicious with high probability for a given attack
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range, the institution can vigorously investigate the flow to determine what malware

has infected the system. (3) When a flow is labelled benign or malicious but only is

certifiably robust to only a small perturbation based on the certificate returned, this

can be used to prioritize the flow for additional screening. In this way the certificate

returned acts as a means of triage for investigating different types of flows. Note that

this does not have to do with the probabilities (i.e. 99% malicious 1% benign) returned

for flow as in other confidence system. Rather this has to do with the robustness of

the flow to small changes that could potentially change the classification. (4) When

a flow is returned with a certificate, have knowledge of exactly what bounds about

which the flow would have to be changed in order to switch the classification. In this

way, a network operator would know for example, that in order to make this particular

malicious flow benign (i.e. the attacker would have had to at least raise the number of

bytes per second by 10,000).
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Methodology

In this chapter, we first give overview of several tools used in this project. Second, we

discuss the datasets used within our work.

This project was developed mainly in Python 3.6 with the TensorFlow library [23].

All models were constructed without Keras. In addition, to these tools, four different

tools were used heavily within this project: Google Colab [9], Cisco Joy [2], CleverHans

[55], and SMOTE [33]. Google Colab is on online environment in which much of the

code for this project was written. For the other three tools, we will give an overview of

their use in the upcoming sections.

The datasets used for this work were UNSW-NB15 [53], USTC-TFC016 [75], and

CSE-CIC-IDS2018 [4]. We will give a brief overview of the features within these datasets

that we used as well as some data analysis that we performed on each of them.

4.1 Cisco Joy

Cisco joy is a software package developed by Cisco that extracts data features from live

network traffic as well as pcap files and stores them in JSON format. The data that

it is able to extract is similar to that of Neflow [2]. However, in addition to being able
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to process live network flows and process packets, Joy allows the exploration of data at

scale. The information that can be gleaned from joy includes HTTP, DNS, TLS, SNI

data as well as the following:

1. the sequence lengths and arrival times of IP packets

2. the probability distribution of bytes within the data portion of a flow and their

entropy

3. the sequence of lengths and arrival times of TLS records

4. non-encrypted TLS data, such as the list of offered cipher-suites

5. DNS names, addresses, and TLLs

6. HTTP header elements

7. the name of processes associated with the flow

8. bidirectional flow information including packet timings, packet sizes, and the num-

ber of bytes in and out

Within our work, Cisco Joy was used in order to get bidirectional flow information. We

specifically used the following command to process USTC dataset flows.

bin / joy b i d i r=1 ppi=1 http=1 t l s=1 dns=1 output=cr id ex . j son c r i d ex . pcap

This command allows joy to process flows, group them as bidirectional, extract packet

level information and to extract http, tls, and dns information. After joy processing,

a subset of the statistics (a subset of the statistics extracted in Malalert [59] on a set

number of features were calculated. These statistics included the maximum, the sum,

the minimum, the average, the standard deviation, and the variance.
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4.2 CleverHans

For the creation of adversarial examples, the open source library CleverHans was used.

CleverHans was developed and is maintained by Ian Goodfellow and Nicolas Paper-

not [55]. CleverHans, more precisely, is a TensorFlow library that implements several

different popular adversarial attacks. Taking in either a Keras model or a tensor that

returns a probability function or the logits, CleverHans is able to construct and per-

form several different types of adversarial attacks including all of those described in the

Background chapter. We used CleverHans in order to create adversarial examples using

the sparse l1 descent attack, fast-gradient sign method attack, and the HopSkipJump

attack specifically.

Note that we used the version of CleverHans released as of June 2019. We noticed

near the end of this project in August of 2019 that some of the functions within Clev-

erHans were changed slightly. To replicate our results, please use the most updated

version of CleverHans as of June 2019.

4.3 SMOTE: Synthetic Minority Over-sampling Tech-

nique

Within our work, both the USTC and UNSW datasets were heavily imbalanced. This

imbalance mirrors the imbalance between benign and malicious traffic in real world

settings. Most traffic that is sent is benign; it is only rare malicious traffic that needs

to be detected and stopped. However, misclassifying these malicious flows comes at a

high cost.

In training machine learning models, often the larger majority class can overwhelm

the minority class, causing the model to only return one type of label. Basic under
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sampling of the benign flows and oversampling of the malicious flows is thus often used

when training models. This of course can lead to somewhat skewed results.

Instead of simply oversampling the minority class (malicious flows in our work),

we employed SMOTE. SMOTE create synthetic minority class examples in order to

better train the model. SMOTE works by taking each minority class sample and in-

troducing synthetic examples along the ’line segments joining any/all of the k minority

class nearest neighbours’ [33]. These k nearest neighbours are randomly chosen. More

specifically, synthetic examples are constructed by:

Algorithm 3 SMOTE
1: Take the difference between the feature vector and its nearest neighbour
2: Multiply the difference by a random number between 0 and 1 and add it to the

feature vector
3: Add the new feature vector to the list of features X
4: Repeat until the number of minority examples equals the number of majority ex-

amples

4.4 UNSW-NB15

The UNSW-NB15 dataset was developed by the Cyber Range Lab of the Australian

Centre for Cybersecurity (ACCS) in order to update the contemporaneous set of

datasets with one that included real normal malicious activities and synthetic attack

behaviours [53]. UNSW-NB15 specifically sought to counteract the unavailability of

standard network benchmark data set challenges. Older datasets like KDD98, KDD-

CUP99, and KSLKDD, generated over a decade ago, at the time did not reflect modern

network traffic and had relatively low bars for detecting malicious traffic. UNSW-NB15

updates these datasets and incorporates both real and synthesized modern network

attack traffic. In addition to providing the raw traffic, UNSW-NB15 provides a list of

generated features from the gleaned bidirectional flows.
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Table 4.1: UNSW Dataset Flow Distribution
Type Number of

Records
UNSW Description

Benign 2,218,761 Normal transaction data

Fuzzers 24,346 Attempts to cause program failure by feeding random
data

Analysis 2,677 Port scans, spam, and html file penetrations

Backdoors 2,329 A system security mechanism is bypassed to access com-
puter data

DoS 16,253 Attempt to make a server unavailable to users, by tem-
porarily interrupting or suspending the services of a host

Exploits 44,525 Attacker knows a security issue in an OS or piece of soft-
ware and leverages vulnerability

Generic 215,481 Generic attack that works against block-ciphers of a
given block and key size, without consideration of the
structure of the block-cipher

Reconnaissance 215,481 Generic attack that works against block-ciphers of a
given block and key size, without consideration of the
structure of the block-cipher

Shellcode 1,511 Code used as a payload in exploitation of a vulnerability

Worm 174 Code replicates itself to spread.

The UNSW-NB15 data set was created using the IXIA Perfect Storm tool in a sim-

ulated environment over the course of 31 hours. The IXIA tools downloads information

about new attacks and is continually updated from a CVE site (https://cve.mitre.org/).

This particular site contains information about all publicly known security vulnerabil-

ities and attacks. In order to capture the network traffic, the tcpdump tool was used.

The dataset itself contains nine different families of attack in addition to benign traffic.

Specifically, it contains: Backdoors, Fuzzers, Analysis attacks, DoS attacks, Exploits,

Generic Block-cipher attacks, Shellcode and Worms. See Table 4.1 for details about

the types of attacks.
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From this dataset, 47 different flow statistics were gathered about the flow. We a

subset (due to space constraints) of these flows and their indices in Table 4.2. These

features were extracted using the Argus and Bro-IDs toolsets [53].

Table 4.2: UNSW Data Set Feature List 2
Number Name Description

Content Features

19 swin Source TCP window advertisement

20 dwin Destination TCP window advertisement

21 stcpb Source sequence number

22 dtcpb Destination sequence number

23 smeansz Mean of the flow packet size transmitted by the src

24 dmeansz Mean of the flow packet size transmitted by the dst

25 trans-depth the depth into the connection of the http
request/response

26 res-bdy-len The content size of the data transferred from the
server’s http service

Time Features

27 sjit Source jitter (mSec)

28 djit Destination jitter (mSec)

29 stime Flow Start time

30 ltime Flow End time

31 sinpkt Source inter-packet arrival time (mSec)

32 dinpkt Destination inter-packet arrival time (mSec)

33 tcprtt The sum of ’synack’ and ’ackdat’ of the TCP

34 synack The time between the SYN and the SYN-ACK pack-
ets of the TCP

35 ackdat The time between the SYN-ACK and the ACK pack-
ets of the TCP
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4.4.1 UNSW Data Analysis

For the purposes of this work, we only considered HTTP service flows for consistency.

Namely, in this work, we desired for the flows considered to be of the same type within

the network so that the differentiation between DNS and HTTP behaviour patterns

would not complicate later parts of this work. In any case, we now present the details

of subset that we used within this work. As seen in this work, there were no shellcode
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Figure 4.1: Data distribution of UNSW-NB15 HTTP flows considered in this work
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attack flows under the http service (this is because it uses the ssh service). As a result,

we do consider this type of attack within the rest of this work.

As seen in Fig.4.1, there is a significant difference in the amount of data between

the malicious and benign flows. Furthermore, even amongst the malicious flows, there

is much variance in the number of flows. As a result, in order to combat the imbalance

within the dataset, we performed up sampling via SMOTE on clusters of each type of

flow.

In order to get the clusters for up sampling each type of malicious flow, we first

performed K-means clustering with the numerical features within UNSW dataset to

identify the number of natural clusters within each type of malicious flow.

Figure 4.2: Clustering inertia vs. the number of clusters for Generic malicious flows.

Using the k-means algorithms we found the elbow of where the decrease in the

inertia/mean squared error of clustering began to level off. Here we placed the number

of clusters. This can be seen most clearly in Fig. 4.2. For example, for the Generic

malicious flows, the number of clusters was 4. After performing this clustering, we
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performed resampling for each cluster to get at most 5,000 flows for each cluster. In

this way we managed to achieve a balanced set.

After performing the clustering, we also wanted to ensure that we were obtaining

useful information from each numerical feature in the dataset. For this reason, we

conducted feature correlation in order to ascertain how much each feature could be

predicted by the others. In this way we could determine, whether a feature was actually

useful for machine learning.
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Figure 4.3: Numerical Feature Correlation Matrix for the UNSW dataset.

As seen in Fig. 4.3, a lot of the features are generally well-correlated with each other.

However, despite this in most cases this is a fairly weak correlation. There is a very

strong correlation amongst the feature 25-28. These are the features that contain the
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timing data ’tcprtt’, ’synack’, ’ackdat’ and the binary flag ’is-sm-ips-ports’. This corre-

lation makes sense because ’tcprtt’ is the sum of ’synack’ and ’ackdat’. Furthermore, it

makes sense that this timing data is correlated to ’is-sm-ips-ports’ because this timing

data would be short or long if the client equalled the server to which it was trying to

connect. For this paper, we decided to keep these respective features in order to better

conduct finer-grained analysis of different types of malware. However, for future work

(see Future Work) it would be interesting to observe how different feature subsets would

affect our experiment.

In addition to performing the clustering and feature analysis, we also performed

PCA and TSNE analysis on this dataset. We performed this initial analysis of the

datasets, in order to (on the first order) gain an understanding of the separation between

malicious and benign flows. Furthermore, we further performed the TSNE analysis to

see potential differences between the different types of malicious flows.

PCA analysis

Figure 4.4: Principal component analysis of the UNSW dataset: Benign vs. Malicious.
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We plotted the 3D representation of UNSW dataset as seen in Fig. 4.4. As seen in

principal component analysis of the UNSW dataset, there is a clear division between

the malicious and benign flows. While there are some areas where they overlap, this

initial analysis, indicated that that there was a clear means of separating out most of

the malicious activity within the dataset from the benign.

t-SNE Analysis

We now present 2-D and 3-D t-SNE representations of the UNSW dataset.

Figure 4.5: 2D t-SNE of the UNSW
dataset: Benign vs. Malicious.

Figure 4.6: 3D t-SNE of the UNSW
dataset: Benign vs. Malicious.

As can be seen in Figs. 4.5 and 4.6, there is an even more clear separation of

the benign and malicious data. Although this is only a subset of the dataset (for

visualization purposes), this further reinforces that this dataset is separable into benign

and malicious flows.

Finally, we present a t-SNE plot for only the malicious flows. Here we look to see

if there were clear defining differences between the different types of malicious flows.

Here we see fewer dividing lines between the types of flows. Although there are certain
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Figure 4.7: 3D t-SNE of the UNSW dataset: Different types of Malicious Flows.

lines that are clear, i.e. between Scan and Analysis flows, overall, there are not simple

lines that can be draw that would separate the different types of flows. Despite this in

Fig. 4.7, there is ’pancaking’ of some of the types of flows along the z-axis suggesting

another means of differentiating the types of flows.

This concludes our discussion of the UNSW-NB15 dataset.
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4.5 USTC-TFC2016

Here we will discuss the details of the USTC-TF2016 dataset. The USTC-TF2016

dataset is separated into two different types of traffic. In addition to having ten different

types of malware traffic from public websites that were collected by the CTU University

of Prague Stratosphere Lab from 2011-2015 (see Table 4.3, the dataset includes normal

traffic collected using the IXIA tool [75]. The normal traffic specifically came from eight

different types of sources: BitTorrent, Facetime, FTP, Gmail, MySQL, Outlook Email,

Skype, SMB, Weibo, and World of Warcraft.

Table 4.3: USTC Malware Traffic
Name CTU-Name Binary MD5

Cridex 108-1 25b8631afeea279ac00b2da70fffe18a

Geodo 119-2 306573e52008779a0801a25fafb18101

HtBot 110-1 e515267ba19417974a63b51e4f7dd9e9

Miuref 127-1 a41d395286deb113e17bd3f4b69ec182

Neris 423-3 bf08e6b02e00d2bc6dd493e93e69872f

Nsis-ay 53 eaf85db9898d3c9101fd5fcfa4ac80e4

Shifu 142-1 b9bc3f1b2aace824482c10ffa422f78b

Tinba 150-1 e9718e38e35ca31c6bc0281cb4ecfae8

Virut 54 85f9a5247afbe51e64794193f1dd72eb

Zeus 116-2 8df6603d7cbc2fd5862b14377582d46

4.5.1 USTC Malware Types

Here we give a brief overview of the types of malware that were within the USTC

dataset.
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Cridex

Cridex is a malware that incorporates the infected computer into a botnet. It also injects

itself into a victim’s web browser to steal information, specifically banking credentials.

Cridex is further able to log keystrokes and capture screenshots.

Cridex is normally spread through emails with malicious attachments, but Cridex

can also self-replicate through USB devices. Specifically, it executes through Microsoft

macros when the attachments are opened by the user. In order to further execute,

Cridex opens up a backdoor on the infected client and then downloads additional files

before joining the botnet.

Cridex had a very wide distribution within the Western world, with most victims

being in the United States, Japan, Germany, and the UK [3].

Geodo

Geodo/Emotet is a banking Trojan. Throughout 2018, Geodo malware was used to

conduct financial theft throughout the world. Geodo is closely related to Cridex and

Cridex’s later iteration Dridex. Like Cridex, Geodo is normally spread through emails.

However, unlike Cridex, Geodo sends malicious URL links within emails.

Once clicked on, geodo sends a HTTP Post request containing encrypted data to a

list of command central IP addresses. Additional files are then sent back to the infected

machine. Geodo is modular Trojan so most of its functionality is actually abstract away

from its main code and is instead in downloaded files. After infecting a machine, Geodo

attempts to gain additional credentials and (most important for its purpose) banking

information.

Geodo continued to heavily infect many banking institutions within the UK in

2018 [7].
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HtBot

HtBot is a malware that allows a remote attacker to gain access and send commands

to a victim machine operated by the Windows OS. As the name implies, HtBot causes

the infected computer to become a bot within a given network. HtBot was prevalent

in 2013 [10].

Miuref

Miuref is a Trojan horse. Once a client is infected Miuref, Miuref downloads several

malicious files. Miuref infected clients are often participants in click fraud. Miuref is

known to spread via email attachments.

Specifically, Miuref infected computers usually attempt to connect to 176.9.245.16

address and download files such as BluetoothUtilperf.1, and BluetoothUtilperf.dll. and

then engage in various forms of click fraud [13].

Neris

Neris is also a type of botnet sent via email. In particular Neris uses an HTTP-based

communication channel in order to spam and DDoS victim websites [14].

Nsis-Downloader-Ay

Nsis (Nullsoft Scriptable Install System) is a Trojan botnet that specifically targets

Windows platforms. After being infected, Nsis is often used to download and install

additional malware. Like other types of malware, Nsis is spread via email [15].

Shifu

Shifu is a banking Trojan discovered in 2015 that targets Windows computers. Borrow-

ing some of its central configurations from other successful banking Trojans like Zeus
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and Cridex, this Trojan was devastating for those that it infected. Specifically, Shifu

targeted hosts by exploiting the Window vulnerability CVE-2015-0003 in order to gain

system privileges.

Shifu was mostly active in banks in Japan and the UK [18].

Tiny Banker Trojan/Tinba

Tinba is a Trojan meant to target banking websites. Tinba works by establishing man-

in-browser attacks. Specifically, Tinba uses packet sniffing in order to determine if an

infected client is on a banking website. After confirming this, Tinba will form-grab the

baking webpage before it is encrypted by HTTPS and then send user keystrokes to a

command center.

Tinba was a major threat in 2012-2013 and infected many major institutions in-

cluding Bank of America, Wells Fargo, and TD Bank [20].

Virut

Virut was a major botnet that operated from 2007-2012. Virut infected executable files

as well as ASP, HTML, and PHP files. Virut has worm-like patterns (i.e. it spreads by

copying itself to USB and network drives).

Furthermore, Virut is an entry-point obscuring (EPO) polymorphic file infecting

virus. It is able to infect executable files by hooking system APIs. After infecting a

given client, Virut creates a back door that allows the attacker to send commands to

the compromised computer via the Internet Relay Chat.

Virut was prevalent in the United States, China, the UK, India, and Canada [21].
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Zeus/Zbot

Zeus is a Trojan horse that steals information from the infected client. Zeus targets user

credentials, and in particular system information and banking details. Zeus was built

from the online Trojan-building toolkit, making its proliferation even more noteworthy.

Zeus is primarily spread through email and drive-by downloads.

Zeus automatically gather any passwords that were stored on the client’s browser

while also monitoring user behaviour to glean more user credentials [22].

4.5.2 USTC Data Analysis

Unlike the UNSW dataset ready-made features were not available for USTC dataset.

As a result, Joy was used in order to process these flows. After processing, statistics

including the sum, maximum, minimum, mean, standard deviation, and variance were

extracted for each feature from this data and for each bidirectional flow. This feature

set is subset of feature set created in Malalert [59]. Note again for this work flows are

considered all bidirectional packets that have the same client and server IPs and the

same client and server ports.

1. The number of packets sent from the client to server

2. The number of packets sent from the server to the client

3. The number of total packets sent within the flow

4. The number of bytes sent from the client to the server

5. The number of bytes sent from the server to the client

6. The total number of bytes sent in the flow

7. The time intervals between packets sent from the client to the server

63



Page: 64—Chapter 4 : Methodology

8. The time intervals sent from the server to the client

9. All time intervals in the flow

10. The flag counts for syn, ack, psh, and fin flags within packets from the client to

server.

11. The flag counts for syn, ack, psh, and fin flags within packets from the server to

the client.

12. The duration between bidirectional flows

After processing there were 158 different statistics collected. In addition to these flow

statistics, we also collected the sequences of inter-arrival packet timings, packet sizes,

and packet directions for each flow. This additional information was used in a different

flow model. See the Results chapter for more details.

After processing, the following distribution of flows was observed.

Again, as seen in Fig.4.8, there is a significant difference in the amount of data

between the malicious and benign flows. Again, as in the UNSW dataset evens amongst

the malicious flows, there is much variance in the number of flows. Again, to combat the

imbalance in the set, we performed up sampling on the malware data sets using SMOTE.

Like in case of UNSW, we first performed k-means clustering before up sampling with

SMOTE so that we could have equal amounts (5000) of data within each cluster.

As with the UNSW dataset, after performing the clustering, we also wanted to

ensure that we were obtaining useful information from each numerical feature in the

dataset. For this reason, we conducted feature correlation in order to ascertain how

much each feature could be predicted by the others. This was especially important for

our analysis given that the features that we designed were manually chosen by and were

not a given feature of the dataset.
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Figure 4.8: Distribution of USTC flows after Joy processing
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Figure 4.9: Feature Correlation for the USTC dataset

As expected, because we took five statistics for several features (i.e. number of

bytes), we see groups high correlation in our feature set. Despite this, in several places

we see areas of very low correlation or neutral correlation. Thus, as with UNSW dataset,

we keep the features that we designed and leave feature selection and its effects on our

experiments for future work (see Future Work chapter).

PCA analysis

Again, we do PCA analysis for the USTC dataset to ascertain the separability of the

benign and the malicious flows using only the feature set.
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Figure 4.10: PCA Analysis of the USTC dataset: Benign vs Malicious

Again in Fig.4.10 we see a clear separation between the subsampled malicious and

benign flows. This confirms that a neural network will be able to separate these two

types of flows.

t-SNE analysis

As with the UNSW dataset we also performed t-SNE analysis for malicious vs benign

flows in the USTC dataset. Figs.4.11 and 4.12 further confirms that there is a clear

difference between the malicious and benign flows.

We now consider the separability of the USTC/CTU malicious flows into their dif-

ferent types using t-SNE analysis. As seen Fig. 4.13, there is more distinct separations

between the different types of malware traffic using the features gleaned from Joy.

There are clearer divisions between the different botnet/Trojans than that shown in

the UNSW dataset. This completes the analysis of the USTC dataset.
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Figure 4.12: 3D t-SNE Analysis of the
USTC dataset: Benign vs Malicious
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Figure 4.13: 3D t-SNE Analysis of the USTC dataset: Benign vs Malicious
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4.6 CSE-CIC-IDS2018

Developed by the Communications Security Establishment (CSE) and the Canadian

Institute for Cybersecurity (CIC), the CSE-CIC-IDS2018 dataset is one the most up-

to-date, comprehensive, and extensive network security datasets publicly available. This

dataset generates a diverse set of user profiles that represent a variety of abstract net-

work behaviours. This dataset further is updated almost annually with new attacks.

The 2018 dataset includes seven different attack scenarios: Brute force attacks, the

Heartbleed attack, Botnets, DoS attacks, DDoS attacks, Web-based attacks, and infil-

tration attacks from within the network. The adversarial architecture to perform these

attacks includes over 50 machines. The defending organization itself is also massive;

it includes 5 departments that contain 420 machines and 30 servers. The dataset in-

cludes network traffic and system logs of each machine as well as 76 statistical features

extracted on bidirectional using CICFlowMeter-V3 [4], [6]. Due to the size of this

dataset, for the purposes of this work, we consider a subset of this dataset, namely the

botnet attacks from March 2, 2018. The Botnets used within the CSE-CIC-IDS2018

were both the Zeus and Ares botnet. For more details about the Zeus Trojan software

see Section 4.5. The Ares botnet is an open source botnet with the ability for remote

control, screenshotting, and key-logging [4]. These botnet software were used to take

screenshots on victim machines every 400 second.

From this dataset, 76 different flow statistics were gathered about each flow. We

give a subset(due to space constraint) of these features here in Table 4.4.
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Table 4.4: CSE-CIC-IDS2018 Dataset Feature List 2
Number Name Description

Flow Features

41 pkt-len-avg Mean length of a flow

42 pkt-len-std Standard deviation length of a flow

43 pkt-len-va Minimum inter-arrival time of packet

44 fin-cnt Number of packets with FIN

45 syn-cnt Number of packets with SYN

46 rst-cnt Number of packets with RST

47 pst-cnt Number of packets with PUSH

48 ack-cnt Number of packets with ACK

49 urg-cnt Number of packets with URG

50 cwe-cnt Number of packets with CWE

51 ece-cnt Number of packets with ECE

52 down-up-ratio Download and upload ratio

53 pkt-size-avg Average size of packet

54 fw-seg-avg Average size observed in the forward direction

55 bw-seg-avg Average size observed in the backward direction

56 fw-byt-blk-avg Average number of bytes bulk rate in the forward
direction

57 fw-pkt-blk-avg Average number of packets bulk rate in the forward
direction

58 fw-blk-rate-avg Average number of bulk rate in the forward direction

59 bw-byt-blk-avg Average number of packets bulk rate in the backward
direction

60 bw-blk-rate-avg Average number of bulk rate in the backward
direction
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4.6.1 CSE-CIC Data Analysis

After processing and removing flows that were incomplete or contained nonsensical

inputs (i.e. packets/s = inf), we got the distribution in Fig. 4.14.
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Figure 4.14: Distribution of CSE-CIC-IDS2018 flows

Unlike in the UNSW-NB15 and the USTC-TFC2016 datasets, we did not see a

major disparity in number between the malicious and benign flows. As a result, for this

dataset, we did not perform resampling.

As before we also wanted to ensure that we were obtaining useful information from

each statistical feature in the dataset. For this reason, we conducted feature correlation

in order to ascertain the usefulness of each feature.

Again, we see a great deal of heavy feature correlation between neighbouring fea-

tures. This makes sense given that for several features the CSE-CIC-IDS2018 dataset

takes multiple statistics. We do not seek to prune the number of features here but leave

this to Future Work.

PCA analysis

Again, we do PCA analysis for the CSE-CIC-IDS2018 dataset to ascertain the separa-

bility of the benign and the malicious flows using only the feature set.

71



Page: 72—Chapter 4 : Methodology

fea
tur

e_0

fea
tur

e_2

fea
tur

e_4

fea
tur

e_6

fea
tur

e_8

fea
tur

e_1
0

fea
tur

e_1
2

fea
tur

e_1
4

fea
tur

e_1
6

fea
tur

e_1
8

fea
tur

e_2
0

fea
tur

e_2
2

fea
tur

e_2
4

fea
tur

e_2
6

fea
tur

e_2
8

fea
tur

e_3
0

fea
tur

e_3
2

fea
tur

e_3
4

fea
tur

e_3
6

fea
tur

e_3
8

fea
tur

e_4
0

fea
tur

e_4
2

fea
tur

e_4
4

fea
tur

e_4
6

fea
tur

e_4
8

fea
tur

e_5
0

fea
tur

e_5
2

fea
tur

e_5
4

fea
tur

e_5
6

fea
tur

e_5
8

fea
tur

e_6
0

fea
tur

e_6
2

fea
tur

e_6
4

fea
tur

e_6
6

fea
tur

e_6
8

fea
tur

e_7
0

fea
tur

e_7
2

fea
tur

e_7
4

feature_0
feature_2
feature_4
feature_6
feature_8

feature_10
feature_12
feature_14
feature_16
feature_18
feature_20
feature_22
feature_24
feature_26
feature_28
feature_30
feature_32
feature_34
feature_36
feature_38
feature_40
feature_42
feature_44
feature_46
feature_48
feature_50
feature_52
feature_54
feature_56
feature_58
feature_60
feature_62
feature_64
feature_66
feature_68
feature_70
feature_72
feature_74 0.8

0.4

0.0

0.4

0.8

Feature Correlation Matrix for the CSE-CIC Dataset

Figure 4.15: Feature Correlation for the CSE-CIC-IDS2018 dataset.

Again in Fig.4.16 we see a clear separation between the subsampled malicious and

benign flows. In fact, it appears the malicious flows are very well clustered in one

specific area. This shows the similarity amongst the botnet traffic when compared to

benign. Because of this separation, neural network will surely be able to separate these

two types of flows.

t-SNE analysis

As with the UNSW dataset and USTC dataset we also performed t-SNE analysis for

malicious vs benign flows in the CSE-CIC-IDS2018 dataset.
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Figure 4.16: PCA Analysis of the CSE-CIC-IDS2018 dataset: Benign vs Malicious.
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Figs. 4.17 and 4.18 again confirm that there is a clear difference between the mali-

cious/botnet and benign flows. This completes the analysis of the CSE-CIC-IDS2018

dataset.
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Chapter 5

Set-up and Implementation

In this chapter, we consider the neural network implementation used in the experi-

ments, how the models were trained, and give an overview of the metrics used in our

experiments.

5.1 Neural Networks

In this section we outline, the neural networks that were used within this work and the

training procedures that we used with them. The neural networks used included a 5-

layer convolutional network, an 18-layer ResNet that made use of an ensemble method,

and two different tree shaped deep neural networks that make use of the previous two

neural networks. (For completeness we mention here that a LSTM [49] based approach

was also attempted but returned dismal results, so we do not include it within the rest

of our work or discussion).
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Table 5.1: Considered Convolutional Neural Networks
Model Architecture Details

CNN-0 Dense(784)-Conv2D(5,5,1,32)-MaxPool(2,2)-
Conv2D(5,5,1,64)-MaxPool(2,2)-Dropout(0.2)-
Dense(1024)-Dropout(0.4)-Dense(2)-Softmax() [61], [76]

CNN-1 Dense(784)-Conv2D(5,5,1,32)-BatchNormalization-
Conv2D(5,5,1,64)-BatchNormalization-Dense(1024)-
Dense(2)-Softmax() [49], [36]

CNN-2 Dense(784)-Conv2D(5,5,1,32)-BatchNormalization-
Conv2D(5,5,1,64)-BatchNormalization-Dropout(0.2)-
Dense(1024)-Dropout(0.4)-Dense(2)-Softmax() [49]

CNN-3 Dense(784)-Conv2D(5,5,1,16)-BatchNormalization-
Conv2D(5,5,1,32)-BatchNormalization-
Conv2D(5,5,1,64)-Conv2D(5,5,1,128)-Dropout(0.3)-
Dense(1024)-Dropout(0.5)-Dense(2)-Softmax() [49]

CNN-4 Dense(784)-Conv2D(5,5,1,16)-BatchNormalization-
Conv2D(5,5,1,32)-BatchNormalization-
Conv2D(5,5,1,64)-Conv2D(5,5,1,128)-Dropout(0.4)-
Dense(1024)-Dropout(0.5)-Dense(2)-Softmax() [49]

CNN-4 Dense(784)-Conv2D(5,5,1,32)-BatchNormalization-
Conv2D(5,5,1,32)-MaxPool(2,2)-BatchNormalization-
Conv2D(5,5,1,64)-BatchNormalization-
Conv2D(5,5,1,64)-MaxPool(2,2)-BatchNormalization-
Conv2D(5,5,1,128)-Conv2D(5,5,1,64)-Dropout(0.3)-
Dense(1024)-Dropout(0.5)-Dense(2)-Softmax() [49]

CNN-5 Dense(784)-Conv2D(5,5,1,32)-BatchNormalization-
Conv2D(5,5,1,32)-MaxPool(2,2)-BatchNormalization-
Conv2D(5,5,1,64)-BatchNormalization-
Conv2D(5,5,1,64)-MaxPool(2,2)-BatchNormalization-
Conv2D(5,5,1,128)-Conv2D(5,5,1,64)-Dropout(0.3)-
Dense(1024)-Dropout(0.5)-Dense(2)-Softmax() [49]
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Figure 5.1: Diagram of the CNN-0 neural network. The CNN-0 network has a dense
layer followed by two convolutional layers before going through a fully connected layer
and then a SoftMax layer for prediction.

5.1.1 Convolutional Neural Network Implementation

Within Table5.1, Dense(n) describes a fully connected layer with n output nodes.

Conv2D(n,o,p,q) describes a convolutional layer with kernel size (n,o), stride p, and

q filters. Finally, Dropout (f) describes a dropout layer with rate f. These models

were gleaned from [49], [76], [36], [61]. After training the above six models on the

USTC dataset, we found that CNN-0 gave the best results in differentiating different

malicious and benign flows. We thus chose to use this neural network for the basis

of our implementation throughout the rest of this work. (Given that the crux of this

work, is in creating a means of making these models robust to adversarial examples and

identifying how adversaries can take advantage of these examples and not in creating

the best means of differentiating flows in every situation, we leave finding the truly best

model in all situation for this task to Future Work).

77



Page: 78—Chapter 5 : Set-up and Implementation

While training, we normalized all features to be within the range [0,1]. We further

used an 80/10/10 split for the training, validation, and testing (this was both for the

UNSW, USTC, and CSE-CIC datasets). In order to train this model, we used an

Adam optimizer with a learning rate of 1x10−4. During training, we made use of early

stopping based on the validation set. If we saw that the validation decreased twice in

a row, we stopped training.

5.1.2 RseNet Implementation

Figure 5.2: ResNet-architecture: This
ResNet takes in sequential data [30].

In addition to using a convolutional net-

work (CNN-0) in order to differentiate

flows, we also used an 18-layer ResNet en-

semble for this work [42]. Bhat et. al [30]

used this ensemble ResNet in order to

perform website fingerprinting based on

sequence of packets and statistical flow

data. In this work, we take their method-

ology and apply it to uncovering and rec-

ognizing deeper information in malicious

traffic. For this architecture we only con-

sider the USTC dataset as the UNSW and

CSE-CIC datasets sizes were prohibitive.

In our work, for our sequential data,

we consider not only the sequence of

packet directions and packet timing infor-

mation but also the sequence of packet

sizes. For each of these three sequences
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we put them through an individual 18-layer ResNet that makes use causal padding and

dilated convolutions. As discussed in the Background chapter, these aspects when in-

cluding in convolutional layers allow for the convolutions to understanding longer term

sequential trends in data. We further included the metadata that we gleaned from Joy

after processing the timing data within each differently trained ResNet. We do this by

concatenating the output timing embedding of the ResNet with the metadata before

putting the combined embedding through a fully connected layer with Dropout.

This can be seen most clearly in Fig.5.4. This gives us three different get three

different 1024-dimensional embeddings of the data. After putting this new embedding

through a another fully connected layer with dropout, this final embedding is then sent

through a final SoftMax layer.

Figure 5.3: RESNET-implementation: This RESNET takes in timing, packet sizes,
direction data as well flow metadata.
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We used 128 as maximum sequence length for a single flow’s timing information (i.e.

we only consider the first 128 packets for the ResNet). We did this because at the 95th

percentile, the length of the flows was only 36 packets. We thus padded all flows with

0s if they had less than 128 packets for the ResNet. Again, the dimensionality of the

metadata in the USTC dataset was 158.

During training, we used an 80/10/10 split for the training, validation, and test set.

In order to train this model, we used an Adam optimizer with an initial learning rate

of 1.0 × 10−3. After decreasing in accuracy twice in a row on the validation set, we

decreased the learning rate by multiplying it by
√

0.1 until it reached a learning rate of

1 × 10−5. Once it reached this learning rate, we stopped training after it decreased in

accuracy on the validation set again.

5.1.3 Tree-Shaped Deep Neural Networks

In addition to the 5-layer convolutional network and the ensemble encoder, we made

use of two different tree-shaped deep neural network. The idea behind the tree-shaped

neural network is that after the first layer of tree separated out whether a flow was

malicious or benign, the second layer of the tree would perform more fine-grained anal-

ysis and determine the type of malware/attack. The methodology of the two types of

models used was inspired by Chen et al. [35]. As in Chen et al. [35], after determining

whether a flow is malicious, an embedding of the flow from the second to last layer

is taken from model and then concatenated with original input before a finer-grained

classification is performed. For the first tree shaped model, the USTC data is placed

through a pretrained ResNet that differentiates benign from malicious flows. After this,

an embedding of size 1024 is retrieved from the second to last layer of the full ResNet

model and concatenated with metadata. This new embedding is then fed to a new

CNN-0 model for fine-grained analysis. During training of this tree-shaped model, we
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Figure 5.4: This model performs an 11-class classification in two stages for the USTC
dataset. First the model determines whether a flow is malicious or benign. Second,
the model performs a multi-class classification on the different types of botnets in the
dataset. For the fine-grained multi-class classification, it makes use of an embedding
found within the network that performed the classification between malicious and be-
nign flows.

used 80/10/10 split for the training, validation, and test set. Further, in order to train

this second branch of the tree model, we used an Adam optimizer with a learning rate

of 1.0−4. During training, we made use of early stopping based on the validation set.

If we saw that the validation decreased twice in a row, we stopped training.

For the second tree-shaped model that we ran for both the USTC and the UNSW

datasets (the subset of CSE-CIC that we used only contained botnets), the metadata for

both model was placed through a pretrained CNN-0 model that differentiated benign

from malicious flows. After this, an embedding of size 1024 (for both datasets) is

retrieved from the second to last layer of the CNN-0 model and then concatenated with

the original metadata. This new embedding is then fed to a new CNN-0 model for

fine-grained analysis.

During training of this tree-shaped model, we used an 80/10/10 split for the training,

validation, and test set. As before in order to train this second branch of the tree model,

we used an Adam optimizer with a learning rate of 1.0−4. During training, we again

made use of early stopping based on the validation set.
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5.2 Differentially Private Training

In this section, we give an overview differentially private noise was incorporated into

the training methodology that we used when training our neural network architectures.

Training an (ε, δ)-differentially private robust model is similar to training ordinary

models. For instance, the same loss and optimizer is used. For our purposes, in each

model an Adam optimizer with categorical cross entropy was used during training.

The main difference is the constraint on the sensitivity in the pre-noise layer. See the

Background chapter on differential privacy robustness design for more details on this

aspect.

After transforming the pre-noise layer to have sensitivity ∆ <= 1, we added either

Gaussian or Laplace noise scaled by the ∆(1 in all cases within this work) and the

maximum attack vector size Lattack. Because of post-processing property of differential

privacy, this approach ensures that the output of the network is also differentially

private and thus robust to changes in the input of size Lattack. How this noise is added

of course also depends on which metric is being used: l1-norm or l2-norm (namely this

changes how we normalize for sensitivity. For this work, we consider both in different

experiments. Within this work, we considered Lattack-values varying from 0.1 to 1.0.

Autoencoder

In this work, instead of adding noise directly on the input or after the first layer of the

network, we instead trained a stacked-autoencoder that we placed before the neural

network that differentiated the flow type of the input. The autoencoder that we used

had an encoder that first reduced the number of features to half of the number of input

features before reducing them by half again. The decoder then increased the number

of features by doubling the dimensional space before then returning the features to the

original size. In many works, a convolutional auto-encoder is often used, however, in this
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work because we are not using images but rather a series of somewhat unrelated features,

we simply used a series of fully connected layers for our autoencoder. In order to add

noise to our autoencoder, we took three separate approaches. In the first approach, we

added Laplacian noise after the first fully connected layer. Taking a sensitivity approach

of ∆1,1, adding Laplacian noise here allows the model placed after the autoencoder to

be robust to l1-norm type attacks. Note that adding Laplacian noise allows for (ε, 0)-

differential privacy. See the Background chapter on differential privacy for more details.

We secondly added Gaussian noise after the first layer. Taking a sensitivity approach

of ∆1,2, this approach, allows the model placed after the autoencoder to be robust to

l1-norm types of attacks. Note that adding Gaussian noise allows for (ε, δ)-differential

privacy. Despite the δ, this does not affect the later robustness calculations. Lastly, we

added Gaussian directly onto the input before putting the input into the autoencoder.

Taking a sensitivity approach of ∆2,2, this approach allows the model placed after it to

be robust to l2-norm type of attacks.

Note that while training a single draw of noise is used. Only during testing are

multiple independent draws of noise used. These three different types of encoders were

trained for all datasets as well as for an attack range Lattack from 0.1 to 1.0.

Full Model

After completing the training of the autoencoder and separately training each model,

the static output of the autoencoder was fed into each pretrained model. Due to

complexity of each model, once the autoencoder input was immediately input into the

pretrained model, there is a significant drop in accuracy (even for small amounts of

noise). Because of the post-processing property of differential privacy, we can however

train the attached differentiating model for a few epochs in order to make it adjust

to the noisy input. As Lecuyer et al. [47] did, we trained our differentiating (CNN-

83



Page: 84—Chapter 5 : Set-up and Implementation

0/ResNet) model on the autoencoder outputs for 3 epochs to get it to adjust to the

noisy inputs.

5.3 Evaluation Metrics

Before moving into the results section of this work, in this section, we give an overview

of the metrics that we used in order to evaluate the models. Note for each model, when

running adversarial attacks (unless explicitly stated otherwise), we focused on targeted

attacks that changed malicious flows in appearing as benign.

After creating full models that take into account differential privacy, we evaluated

these models using two main metrics. The first metric is ordinary accuracy. This

denotes the fraction of the testing set on which the model was correct. Within this

first metric we also evaluated (most importantly) false negatives. False negatives give

the percentage of malware that was labelled as benign. Labelling malware as benign is

potentially catastrophic given that these flows would not be investigated and thus they

would continue to wreak havoc within a given network.

We also evaluated our networks based on certified accuracy. Certified accuracy

denotes the fraction for which the testing set on which a model’s prediction are both

correct and certified robust for a given threshold [47] (see the Background chapter on

differential privacy for details on how this is done).

Formally these metric are as follows:

1. Conventional accuracy: Σni=1isCorrect(xi)

n
where n is the size of the set.

2. Certified accuracy: Σni=1isCorrect(xi)&robustSize(scores,ε,δ,L)≥T
n

where n is the size of the

set and L is size of the adversarial attack that the model is trained against and

T is an artificial numerical threshold that to which examples should be robust.
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In addition to looking at the above metrics, we lastly considered the distribution of

size of the robustness size.
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Chapter 6

Attacks: Experiments and Results

In this chapter we focus on the details of the experiments run to attack our given net-

works using adversarial attacks. In order to conduct these attacks, we used cleverHans,

an open source software that implements several of the most up-to-date adversarial

attacks on neural networks (see Chapter 4 for details on this software).The experi-

ments run for our adversarial attacks were: (1) black-box attacks with data synthesis

through Jacobian augmentation, (2) black-box HopSkipJump attacks on the networks,

(3) white-box attacks using the Sparse l1 Descent attack,(4) targeted attacks on par-

ticular features of the neural network. Although we present the results for fine-grained

analysis in this section, this work focuses mainly on differentiating malware from benign

flows. As such these networks appear here only to show the real possibility of being

able to differentiate amongst different types of malware just from statistical data. In

order to see our code or to rerun our experiments, please see our anonymous GitHub:

https://github.com/DPSelectro/DPNetwork.
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6.1 Model Initial Results

Before we go into the results of the adversarial attacks and the subsequent description

of the defences, we first give baseline results for each of the models.

6.1.1 CNN-0 UNSW: Malicious vs Benign Classification

Here, we give the baseline result for the CNN-0 on the UNSW dataset. Again, note

that for the purpose of this work only the HTTP flows from the UNSW dataset were

used. For training, the default settings outlined in Chapter 5 were used. We received

the following results on the dataset.
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Figure 6.1: Baseline Confusion matrix for the UNSW dataset: Benign vs Malicious.
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As seen in Fig. 6.1, the false negative rate was fairly low at 5×10−4, which is basically

0. The recall likewise was nearly 1. The false positive rate was also fairly low at 2.2%.

This would mean that there would be small about of extra work in investigating these

positives. The overall accuracy of the network was 97.98%.

6.1.2 CNN-0 USTC: Malicious vs Benign Classification

We give here the baseline result for the CNN-0 on the USTC dataset. Again, for training

, the default settings outlined in Chapter 5 were used. We received the following results

on the dataset.
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Figure 6.2: Baseline Confusion matrix for the USTC dataset: Benign vs Malicious.
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As seen in Fig. 6.2, the false negative rate was fairly low at 1 × 10−3, which is

basically 0. The recall, likewise, was nearly 1. The false positive rate was also very low

at 7× 10−4. The overall accuracy of the network was 99.89%.

6.1.3 CNN-0 CSE-CIC: Malicious vs Benign Classification

We give here the baseline result for the CNN-0 on the CSE-CIC dataset. The default

settings outlined in Chapter 5 were used. We received the following results on the

dataset.
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Figure 6.3: Baseline Confusion matrix for the CSE-CIC dataset: Benign vs Malicious.
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As seen in Fig. 6.3, the false negative rate was fairly low at 4 × 10−3, which is

basically 0. The recall likewise was nearly 1. The false positive rate was very low at

1.4× 10−3. The overall accuracy of the network was 99.78%.

6.1.4 ResNet USTC: Malicious vs Benign Classification

We give here the baseline result for the ResNet on the USTC dataset. Note that

this ResNet made use of directions, packet sizes, and packet inter-arrival sequences.

For training, the default settings outlined in Chapter 5 were used. We received the

following results on the test set.
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Figure 6.4: Baseline Confusion matrix for the USTC dataset: Benign vs Malicious.
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As seen in Fig. 6.4, the false negative rate was fairly low at 1.9 × 10−3, which is

basically 0. The recall likewise was nearly 1. The false positive rate was very low at

5.5× 10−3. The overall accuracy of the network was 99.6%.

6.1.5 Simple Tree CNN-0(2) UNSW: Fine-Grained Analysis

Here we present the results for the fine-grained differentiation of the UNSW dataset’s

different types of network attacks. Again, the default settings were used for training.

The CNN-0 model weights that were created while training CNN-0: UNSW Malicious

vs Benign were used for the first branch of this tree. We received the following results

after evaluating on the given test set.

The conventional accuracy of this model overall was 81.6%. For the interaction be-

tween how the model mislabelled different types of malware as other types see Fig. 6.5.

This confirms that a tree-based approach can be used to differentiate among differ-

ent types of network attacks using statistical features (at least for the UNSW-NB15

dataset).

6.1.6 Simple Tree CNN-0(2) USTC: Fine-Grained Analysis

Here we present the results for fine-grained analysis of the USTC dataset in differen-

tiating different types of malware. The default settings were used for training. The

CNN-0 model weights that were created while training CNN-0: USTC Malicious vs

Benign were used for the first branch of this tree. We received the following results

after evaluating on the given test set.

The conventional accuracy of this model overall was 88.1%. For the interaction

between how the model mislabelled different types of malware as other types see Fig. 6.6.
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Figure 6.5: Confusion matrix for the UNSW dataset for differentiating different types
of network attacks.

6.1.7 Complex ResNet +CNN-0 Tree USTC: Fine-Grained

Analysis

Here we present the results for fine-grained analysis of the USTC dataset in differen-

tiating different types of malware when using ResNet for +CNN-0 combination. The

default settings were used for training. The RESNET model weights that were created

while training ResNet: USTC Malicious vs Benign were used for the first branch of

this tree. We received the following results after evaluating on the given test set. The

conventional accuracy of this model overall was 86.8%. For the interaction between

how the model mislabelled different types of malware as other types see Fig. 6.7.
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Figure 6.6: Confusion matrix for the USTC dataset for Malware.

This completes our presentation of the baseline results of all the models that we

considered within this work. For the rest of this work, we further limit our discussion

to the CNN-0 neural network as that gave us the best results for the USTC dataset.

For the CNN-0 neural network, we run these adversarial attacks for both the UNSW,

USTC, and the CSE-CIC dataset. Despite our focus on this model, our approach is

agnostic to the model that is used, and we only use this model to illustrate the possible

attacks that can be levied against it and to showcase our defence. These types of attacks

can be levied against any system that makes use of statistical features in order to label

flows types (i.e. they can also use other features are well). We use neural networks

here for their effectiveness and convenience in this setting. For our attacks we focus on
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Figure 6.7: Confusion matrix for the USTC dataset for differentiating different types
of Malware,

networks that differentiated malicious from benign software as that is the main focus

on this work.
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6.2 Black-Box l1-norm Adversarial Attacks using

Jacobian-based Dataset Augmentation and l2-

norm Attacks using HopSkipJump

To begin, we ran black box attacks against our models that differentiated benign from

malicious network traffic. This attack was performed on the CNN-0 models specifically.

Note that in this scenario, an adversary only has access to the labels returned on specific

flow instances. This is the equivalent of the adversary sending in different instances of

flows into a network and then determining whether the flow was detected/investigated

as malicious or not. In this section we give the results for two types of these attacks:

Jacobian-based Dataset Augmentation for l1-norm attacks and l2-norm Attacks using

the HopSkipJump attack.

We use the process for Jacobian-based Dataset Augmentation for l1-norm black-box

attacks as outlined by Papernot et al. [56]. As was shown in Fig. 2.4 in order to accom-

plish this, we create substitute models after performing data augmentation, training

said model on the synthetic data. In this work, for the substitute model training, we

create a 16384-size dataset. During the training of the substitute model, we use a

generic 3-layer convolutional network. On these substitute model, in order to perform

adversarial attacks, we use the Fast-Gradient Sign Method (FGSM). We specifically

constrain this attack Lattack by a maximum on the l1-norm for the respective test sets.

After performing this attack on the substitute model, we then ran the adversarial ex-

amples we generated on original model from which the synthetic dataset was originally

generated. We then ascertained the accuracy of the original model on the adversarial

examples generated. Note that ordinarily the models had high accuracies (upwards
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of 97.9% in every case) for their respective validation set. For more details see our

Background chapter on substitute model training.

We used the HopSkipJump attack [34] for the l2-norm black black-box attack be-

cause it is optimized for that norm specifically. For details on the HopSkipJump attack

see our Background chapter or [34].

To implement FGSM for the Jacobian-based approach and the HopSkipJump attack

we used CleverHans.

In addition to running both l1 and l2-norm attacks, we also within those attack ran

two different types those attacks:(1) We first ran attacks specifically targeting turning

malicious examples into appearing benign and (2) we ran attacks that targeted turning

benign examples into appearing malicious. These both accorded with the goals we

outlined in Chapter 3. For each type of attack, we considered the range of Lattack from

0.1 to 1.0.

6.2.1 UNSW: CNN-0 model

We give the results for the UNSW black-box attack here. We begin with the attack

that attempts to transform malicious flow traffic into appearing benign.

As seen in Fig. 6.8, the Jacobian-based black-box attack was not extremely effective.

While it was able to generate adversarial examples, even at a size of 0.1, these examples

did not make up a substantial portion of the dataset. Despite this, as shown in Fig 6.8,

on this dataset, even without access to the model’s weight and design, it was still

possible to generate adversarial examples to trick the model .As seen in Fig. 6.9, the

HopSkipJump attack also remains relatively ineffective until the attack size reaches 0.8

in terms of l2 perturbation. After this, the attack is able to move the accuracy down

to around 87% with an attack range of up to 1.4. This shows that if an adversary

truly wished to attack this model using only a black-box attack, he would be successful
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Figure 6.8: Accuracy of UNSW CNN-
0 under Jacobian-based l1-norm black
box attacks of varying maximum-size
Lattack.
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Figure 6.9: Accuracy of UNSW CNN-
0 under HopSkipJump l2-norm white-
box attacks of varying maximum-size
Lattack.

in generating a few malicious flows that would go undetected. We now move on to

the attack that attempts to generate adversarial examples to transform benign flow

traffic into appearing malicious for the UNSW dataset. We see in Fig. 6.10, that the

attack to transform benign flows into malicious flows was slightly more effective. Even

at the relatively small attack l1-norm size of 0.1, an attacker could still manage to

transform around 12% of the testing set benign flows into malicious flows. Given the

magnitude of the number of flows that could potentially be going through a network,

being able to transform over 12% of these into being perceived as malicious evidences

a clear ability to overwhelm a system that detects malicious flows. Furthermore, as

seen in Fig 6.11, we are able to perform a relatively effective attack against the network

using the HopSkipJump attack. Specifically, we see a large decrease in the accuracy of

model when the size of the attack vector size Lattack > 0.4. After this value, accuracy
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Figure 6.10: Accuracy of UNSW CNN-
0 under Jacobian-Based Data Aug
FGSM l1-norm black box attacks of
varying maximum-size Lattack.
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Figure 6.11: Accuracy of UNSW CNN-
0 under HopSkipJump l2-norm white-
box attacks of varying maximum-size
Lattack.

of the model decreases to just over 60%. This shows that an adversary could manage

to transform a significant amount of benign traffic into appearing malicious.

6.2.2 USTC: CNN-0 model

We now move on to exploring the efficacy of black-box attack on the USTC dataset

using the CNN-0 model for differentiating malicious from benign flows. We begin with

the attack that transforms malicious type flows into appearing benign. We see in

Fig. 6.12 similar behaviour to that of FGSM attack on the UNSW CNN-0 model. At

a maximum Lattack of 1.0, this type of attack can transform around 10% of the testing

set into adversarial examples. Overall, while this attack again was able to generate

adversarial examples even at a maximum perturbation size Lattack of 0.1, it was not

overwhelmingly effective. As seen in Fig. 6.13, the HopSkipJump attacks is also able

to steadily decrease the accuracy of the model as size of the attack increases. Despite
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Figure 6.12: Accuracy of USTC
CNN-0 under Jacobian-based l1-
norm black box attacks of varying
maximum-size Lattack.
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Figure 6.13: Accuracy of USTC
CNN-0 under HopSkipJump l2-
norm white-box attacks of varying
maximum-size Lattack.

this, the HopSkipJump attack is still unable to create an incredibly significant decrease

in accuracy on the model. With the maximum considered attack size Lattack = 1.0

the accuracy on test set decreases only to 91%. Despite this, these results collectively

do exhibit the capability of an adversary to be able to generate malicious to benign

adversarial examples, even if they are small in number. For these types of attack, being

able to create even one targeted attack could have tremendous repercussions.

We now move on to the attack that transforms benign flows into appearing malicious

for the USTC dataset.

Here in Fig. 6.14, we see significant results. An adversary in this scenario, would

be able to transform over 30% of the incoming traffic into appearing malicious by only

perturbing the features by 0.1 (l1-norm). Given even more leeway, an adversary could

end up transforming over 40% of observed benign traffic into appearing malicious. As

seen in Fig 6.15, we again see the effectiveness of this type of attack against the CNN-0
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Figure 6.14: Accuracy of USTC
CNN-0 under Jacobian-based l1-
norm black box attacks of varying
maximum-size Lattack.

0.2 0.4 0.6 0.8 1.0
Attack bound Lattack  L2-norm

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n 

Te
st 

Se
t

USTC Accuracy on Benign -> Malicious Adversarial Examples

Figure 6.15: Accuracy of USTC
CNN-0 under HopSkipJump l2-
norm white-box attacks of varying
maximum-size Lattack.

network. This attack allows the adversary to obtain an accuracy below 50% when the

attack vector size Lattack > 0.5. This shows the efficacy of this type of the attack and the

need to be able to defend against it. This importance is only reinforced by the fact that

this is a black-box attack and thus can be run without any additional knowledge about

the system. Given this capability, here, the adversary has a clear advantage. They

could easily end up overwhelming an institution that makes use of a neural network to

detect malicious traffic. By making a substantial portion of the traffic appear malicious,

the adversary could ensure that the institution is unable to investigate it all.

6.2.3 CSE-CIC: CNN-0 model

We finally move on to exploring the results of black-box attack on the CSE-CIC dataset

using the CNN-0 model for differentiating malicious from benign flows. We again begin

with the attack that transforms malicious type flows into appearing benign.
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Figure 6.16: Accuracy of CSE-
CIC CNN-0 under Jacobian-based l1-
norm black box attacks of varying
maximum-size Lattack.
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Figure 6.17: Accuracy of CSE-
CIC CNN-0 under HopSkipJump l2-
norm white-box attacks of varying
maximum-size Lattack.

We see in Fig. 6.16, tremendously successful behaviour in terms of transforming

malicious examples into benign one. With an attack vector size of L = 0.3, the adversary

can transform upwards of 15% of observed malicious traffic into appearing benign.

Similarly, with an attack vector L ≥ 0.5, the adversary can transform over 60% of

malicious traffic. Furthermore, as seen in Fig. 6.17, the HopSkipJump attacks is also

able to majorly decrease the accuracy of the model as size of the attack increases. Even

with an attack vector size L = 0.1, an attack is able to transform over 90% of traffic

into appearing benign. These results for this dataset confirm an overwhelming ability

of an adversary to transform malicious data into appearing benign and thus of infecting

a system. We now move on to the attack that transforms benign flows into appearing

malicious for the CSE-CIC dataset.

Here for transforming benign flows into appearing malicious, we see very different

behaviour. Namely both our l1-norm and l2-norm attacks in Fig. 6.18 and Fig. 6.19
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Figure 6.18: Accuracy of CSE-
CIC CNN-0 under Jacobian-based l1-
norm black box attacks of varying
maximum-size Lattack.
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Figure 6.19: Accuracy of CSE-
CIC CNN-0 under HopSkipJump l2-
norm white-box attacks of varying
maximum-size Lattack.

respectively remained relatively ineffective. For both, they did not manage to go below

90%. This shows (for at least for this dataset), the difficulty of an adversary in using

a black-box attack to transform benign flows into appearing malicious. The behaviour

for this dataset was the reverse of what we observed for the UNSW and the USTC

datasets. We believe that this may have to do with how we resampled our data. See

our Discussion chapter for more details.

Now that we have given the results for all black-box attacks on our proposed net-

works, we will now move on to show that given additional information and data about

a given model (white-box setting), even more devastating types of attacks can be con-

ducted.
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6.3 White-Box Attacks using Sparse l1 Descent At-

tacks and l2-norm Projected Gradient Descent

In this section, we present white-box attacks on our models using both Sparse l1 De-

scent Attacks and Madry et al.’s [51] Projected Gradient Descent (PGD). Sparse l1

Descent Attacks (2019) are known to outperform the FGSM approach and be compara-

ble to Elastic-Net Method. In addition, they are incredible efficient (as the Elastic-Net

Method can be prohibitive due to the power and time resources that it consumes). Sim-

ilarly, Madry et al.’s [51] PGD, according to the authors is the most powerful 1st order

adversarial attack for the l2-norm and is not resource-intensive. In order to implement

the Sparse l1 Descent Attack and Madry et al [51]’s PGD we made use of CleverHans.

The specific scenario for this type of attack is that a person with access to a given

model wants to sabotage it using his knowledge of a mode’s weights and design.

6.3.1 UNSW: CNN-0 model

We give the results for the UNSW Sparse l1 Descent Attack and the Madry et al. PGD

white-box attacks here. We begin with the attack that attempts to transform malicious

flow traffic into appearing benign.

As seen in Fig. 6.22, there is a sharp drop in accuracy after the maximum size of

0.3. When compared to Fig. 6.8, Fig. 6.22 shows the large advantage that this type

of attack has over black-box attacks. The additional information allows the attack to

transform over 30% of the malicious flows into appearing benign at We further see that

l2-norm attacks a fairly sizeable decrease in accuracy after the size of the attack Lattack

is above 0.3.

We now present the results for an adversary attempting to transform benign flow

into malicious flows.
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Figure 6.20: Accuracy of UNSW
CNN-0 under Sparse l1-norm De-
scent white-box attacks of varying
maximum-size Lattack.

0.0 0.2 0.4 0.6 0.8 1.0
Attack bound Lattack  L2-norm

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 o
n 

Te
st 

Se
t

UNSW Accuracy on Malicious -> Benign Adversarial Examples

Figure 6.21: Accuracy of UNSW
CNN-0 under Madry et al. l2-
norm white-box attacks of varying
maximum-size Lattack.
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Figure 6.22: Accuracy of UNSW
CNN-0 under Sparse l1-norm De-
scent white-box attacks of varying
maximum-size Lattack.
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Figure 6.23: Accuracy of UNSW
CNN-0 under Madry et al. l2-
norm white-box attacks of varying
maximum-size Lattack.
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From Fig. 6.22, it is clear that this l-norm attack was successful. One can easily

observe how an adversary could potentially craft a heavy torrent of ’fake’ malicious

traffic in order to overwhelm a given system. This is especially true if the adversary

can craft adversarial examples with l1-norm perturbation attack vectors that are greater

than 0.5. At this level, this sort of attack could be devastating. Similarly, the l2-norm

PGD attack was also largely successful. This attack further confirms the ability of

an adversary to perform horribly deafening attacks against the network by producing

adversarial examples.

In order to better illustrate what these adversarial attacks look like, we performed t-

SNE analysis on a subset of benign and malicious flows and then placed the adversarial

example within this 3-D environment.
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Figure 6.24: t-SNE of adversarial example with surrounding malicious and benign flows
of the UNSW dataset. This shows at attack with maximum l1-norm perturbation size
of 0.5.
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As seen in Fig .6.24 because of the closeness of the benign and malicious flows, small

amounts of perturbation can cause a misclassification.

6.3.2 USTC: CNN-0 model

We give the results for the USTC Sparse l1 Descent Attack and the Madry et al.’s PGD

white-box attacks here. Again, we begin with the attack that attempts to transform

malicious flow traffic into appearing benign.
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Figure 6.25: Accuracy of UNSW
CNN-0 under Sparse l1-norm De-
scent white-box attacks of varying
maximum-size Lattack.
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Figure 6.26: Accuracy of UNSW
CNN-0 under Madry et al. l2-
norm white-box attacks of varying
maximum-size Lattack.

As seen in Fig. 6.25, the additional information did not lead to a massive decrease

in accuracy as expected for the l1-norm attack. The decrease that we observed was

comparable to that of the black-box attack. It is not initially clear why the decrease

was so minimal. However, for the l2-norm attack we do see the expected results. With

the additional information of the model, this attack is able to transform upwards of

30% of the malicious flows into appearing benign.
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In moving to attacks that transform benign flows into appearing malicious, we see

more of the expected results.
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Figure 6.27: Accuracy of USTC CNN-
0 under Sparse l1-norm Descent white-
box attacks of varying maximum-size
Lattack.
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Figure 6.28: Accuracy of USTC CNN-
0 under Madry et al. l2-norm white-
box attacks of varying maximum-size
Lattack.

In Fig. 6.27, we see an almost immediate drop off in the accuracy of the accuracy.

With a maximum attack vector size of 0.1 the accuracy decreases to 90% and at a

maximum attack vector of 0.3, it then decreases again to being only 18%. This again

shows the effectiveness of an attack meant to craft a heavy torrent of ’fake’ malicious

traffic in order to overwhelm a given system. Looking at the l2-norm attack in Fig. 6.28,

we see a similar huge drop-off in the accuracy of the system. Even with an attack bound

of just 0.1, the accuracy of model on the malicious test set drops to just under 30%.
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Figure 6.29: Accuracy of CSE-CIC
CNN-0 under Sparse l1-norm De-
scent white-box attacks of varying
maximum-size Lattack
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Figure 6.30: Accuracy of CSE-CIC
CNN-0 under Madry et al. l2-
norm white-box attacks of varying
maximum-size Lattack.

6.3.3 CSE-CIC: CNN-0 model

We give the results for the CSE-CIC Sparse l1 Descent Attack and the Madry et al.’s

PGD white-box attacks here. Again, we begin with the attack that attempts to trans-

form malicious flow traffic into appearing benign.

As seen in Fig. 6.29, these types are enormously effective. The l1-norm white-box

attack managed to get the accuracy of the model to only 25% even with an attack

vector Lattack = 0.1. This exhibits the large advantage that knowledge of a system can

potentially has in attacking it. Similarly, for the l2-attack in Fig. 6.30, we again see

a major decrease in accuracy, nearing 0. This serves to show how an adversary with

the appropriate knowledge can attack this system and can create adversarial examples

with near perfect accuracy, thus defeating the system. We now move on to the reverse

attack, namely transforming benign traffic into appearing malicious. In Figs. 6.31 and
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Figure 6.31: Accuracy of CSE-CIC
CNN-0 under Sparse l1-norm De-
scent white-box attacks of varying
maximum-size Lattack.
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Figure 6.32: Accuracy of CSE-CIC
CNN-0 under Madry et al. l2-
norm white-box attacks of varying
maximum-size Lattack.

6.32, we do not see any significant improvement of the effectiveness of the white-box

attack compared to the black-box attacks. The accuracy of the model to this type of

attack remains near 97% for both types of attacks considered here. This shows that

while white-box attack that transform benign flow to malicious flow are possible, this

particular network is fairly robust to them at the levels of attack considered. Again,

this is nearly the opposite of the type of behaviour that we saw for the other datasets.

See the Discussion chapter for our thoughts on this discrepancy.
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6.4 Targeted White-Box Attacks

After performing the baseline black-box and white-box attacks presented in Sections 6.2

and 6.3, we wished to understand what these adversarial attacks translated to in terms

of the feature space that we used for classification. We further wished to ascertain

whether we could perform targeted attacks where we changed only one or two of the

features (i.e. number of packets or bytes/s). We thus performed targeted attacks on

our networks where we used CleverHans to perform adversarial attacks whilst only

changing one or two pre-selected features. We acknowledge that in order to perform

these targeted attacks that we would need to be in a white-box scenario. Performing

these attacks in a black-box scenario does not seem feasible.

In order to first understand what features that we should target in our adversar-

ial attack, we first wanted to get an approximation of which features were the most

important for classification. In order to do this, we first classified our datasets as ei-

ther malicious or benign by using a random forest machine learning algorithm. For

more details about random forests see our Background chapter. Once we had classified

the datasets, we then extracted the indices of the most important features used in the

classification.

The way that feature importance is calculated is based on the information gain

(decrease in entropy). When using decision tree each tree node is treated as a condition

of how to split a given training instance on a single feature. This split is done so that

similar training instances are split in the same way after the node. For random trees,

specifically used for classification, the split is determined based on entropy/the amount

of information that is gained based solely on the feature. These features can then be

ranked in terms of the amount of entropy decrease caused by splitting on that feature.

Thus, this functionality can be used to gain a rough understanding of which features

are the most important for classification purposes [17].
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Once these features were determined for both the UNSW, USTC, and CSE-CIC

datasets, we then ran targeted attacked against the CNN-0 dataset where we attacked

these particular features. For all of the attacks described below we capped our max

attack vector size Lattack = 0.1.

6.4.1 UNSW Targeted Attacks

For UNSW dataset some of the most important features used for classification were

the (1) dttl (destination to time to live value), (2) the ct-state-ttl (ttl information), (3)

the sttl (source to destination time to live), (4) the tcprtt (the TCP connection setup

round trip time), (7) and dload (destination bits per second).

Once we determined that these were the most important features used for classi-

fication, we then ran a Sparse l1 Descent white-box attack, changing only one or two

features at a given time. We now list a subset of these attacks here:

1. We found that for a Generic malware that increasing the destination to source

packet count by 76 caused it to be reclassified as benign.

2. We found that for an Exploit malware that decreasing the total destination to

source packet count by 800 caused it to be reclassified as benign.

3. We found that for an Analysis malware that increasing the destination to source

bits per second by 2.134Kbits caused it to be reclassified as benign.

As seen in this quick enumeration, somewhat counter-intuitive single changes can

cause malware to be misclassified as benign. Given that the above changes would not

be massive alterations to these malware and that they could be easily accomplished,

this is enormously troubling. By knowing the inner-workings of the given CNN, it is

thus possible to craft malware that is functionally equivalent to other malware variants

but that is able to evade detection.
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6.4.2 USTC Targeted Attacks

For the USTC dataset, some of the most important features used for classification were

the (1) the total flow duration, (2) the minimum number of PSH-flagged packets in a

given flow, (3) the average flow duration multiple flows using the same IPs and Ports,

(6) the average number of packets with the ACK flag in a given flow, (8), the average

number of packets sent by the server that have the ACK flag in a given flows.

For the USTC dataset, once we determined that these were the most important

features used for classification, we again ran a Sparse l1 Descent white-box attack,

changing only one or two features at a given time. We list a subset of these attacks

here:

1. We found that for a Cridex malware flow that decreasing the flow duration by 2

seconds and decreasing the average flow duration by 1.8 seconds caused it to be

reclassified as benign.

2. We found for a group of Cridex flows (same IPs and ports) increasing the minimum

flow duration by 2 seconds caused it to be reclassified as benign.

3. We found for a group of Zeus malware flows (same IPs and ports) that increasing

the total flowset duration by .27 second and decreasing the average flow duration

by 2.35 seconds caused it to be reclassified as benign.

4. We found for a group of Hbot malware flow that increasing the standard deviation

of the packet lengths by 0.09 bytes caused the flow to be reclassified as benign.

The above examples further show the efficacy of performing these types of targeted

attacks. Although timing information is more difficult to control, by sending multiple

flows that try to change the flow parameters as above, an adversary can eventually

become successful in evading detection.
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6.4.3 CSE-CIC Targeted Attacks

For CSE-CIC dataset some of the most important features used for classification were

the (1) tot-fw-pk (the total number of forward packets), (2) tot-bw-pk (the total number

of backward packets), (3) bwd-iat-min (the minimum inter-arrival time for backward

packets), (4) bwd-iat-mean (the average inter-arrival time for backward packets), (7)

and fw-pkt-l-std (the standard deviation of the length of forward packets sent).

1. We found that for a Botnet malware flow that increasing the total number forward

bytes by 11005 bytes causes the flow to be reclassified as benign.

2. We found that for a Botnet malware flow that increasing the total number forward

bytes by 5503 bytes causes the flow to be reclassified as benign.

3. We found that for a Botnet malware flow that increasing average length of the

forward flows by 65.7 bytes causes the flow to be reclassified as benign.

4. We found that for a Botnet malware flow that increasing average length of the

forward flows by 44 bytes causes the flow to be reclassified as benign.

The above examples that we gleaned from targeted attacks on the CSE-CIC dataset

exhibits the practicality of these sorts of attacks on this particular network. These

types of attack would be fairly easy to carry out by padding packets sent or sending

more packets within a given flow. This thus further confirms the vulnerability of these

networks to adversarial attacks. As we now have shown, the networks that we have

presented are fairly vulnerable to adversarial attacks, both in white-box and black-box

settings. Given enough time and resources, an adversary can craft malware that could

easily evade detection. Similarly, they could also cascade a network with benign traffic

that appears to be malicious.
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Chapter 7

Defense: Experiments and Results

Now that we have given an overview of the adversarial attacks that can be conducted

against our networks, we now move to the set of our defences that can be used against

these types of attacks. Note that in this chapter, we do not present all graphs that we

received from our experiments due to space constraints. In order to view these figures

please see our anonymous GitHub (https://github.com/DPSelectro/DPNetwork). For

these defences we focus on networks that differentiated malicious from benign software

as that is the main focus on this work. We again further limit our discussion to the

CNN-0 neural network as that gave us the best results for the USTC dataset. For

the CNN-0 neural network, we measure their effectiveness for the UNSW, USTC, and

CSE-CIC dataset. The specific defense experiments that we ran were: (1) robustness

measurements for l1-attacks using Laplace noise after the 1st layer of network, (2) ro-

bustness measurements for l1-attacks using Gaussian noise after the 1st layer of network,

(3) robustness measurements for l2-attacks using Gaussian noise directly on features.

In addition, we also performed Poisson subsampling for the USTC dataset (with all

three types of noise placements) in order to ascertain whether this was a possible step

forward in improving the accuracy and defense trade-offs.
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For each model we focused explicitly on attacks that transformed malicious flows

into appearing benign as these present the most compelling use of our system. For

these results, we used a η = 0.95 where η is the probability that the bounds that we

found hold. Note that η can be arbitrarily small by performing more predictions. For

our work, we performed 40 predictions for each label. Recall that unlike in training,

for predictions, we draw fresh noise each time that make a prediction. Note that for

a fixed η value, the thresholds to which examples are robust can also be improved by

performing more predictions. See our Background chapter for more details on how this

prediction and η determination work.

7.1 DP Defense: Laplace Noise After 1st Layer of Au-

toencoder

In this section, we focus on using Laplace noise after the first layer of an autoencoder

in order to protect against l1-norm attacks. Note that Laplace noise incorporate (ε, 0)

-differential privacy into our autoencoder. For these experiments we chose ε = 1. This

replicates the value chosen by Lecuyer et al. [47].

For the Laplace noise trained models, we ascertained their robustness to adversarial

l1-norm attacks. For this work, again we considered attack vectors that ranged in size

from 0.1 to 1.0.
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7.1.1 UNSW CNN-0 Differential Privacy Laplace Layer-1 Pro-

tection

We now present the results for our differential privacy approach for the UNSW dataset

CNN-0 model. We first showcase the accuracy and. robustness of the model for labelling

malicious flows using multiple predictions.
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Figure 7.1: Laplace Layer1: Graph of UNSW Accuracy on the classification of malicious
flows as well as the average calculated robustness of these flows to adversarial examples.

As seen in Fig. 7.1, the accuracy of the model remains relatively high due to the

number of predictions that are made. Furthermore, the robustness of the model to

adversarial examples generally follows an upward and linear relationship with the attack

bound until starting to level off after 0.3. This initial results evidences a good trade-off

for robustness to adversarial examples vs. accuracy. The model is able to maintain

nearly perfect accuracy on the dataset until incorporating larger noise for an attack
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Figure 7.2: Laplace Layer1: Robust-
ness Distribution for UNSW dataset
after training with noise for an l1-
norm attack vector of size 0.1.

Figure 7.3: Laplace Layer1: Robust-
ness Distribution for UNSW dataset
after training with noise for an l1-
norm attack vector of size 0.7.

vector of size Lattack = 0.5. Furthermore, after attack vector size Lattack = 0.7, there is

lesser returns in terms of robustness, so higher defense values could not be recommended

anyway.

We finally evidence a subset of the graphs that showcase the distribution of robust-

ness for varying attack/noise-training levels.

As seen in Figs 7.2 to 7.3 for smaller attack vector training sizes, the robustness of

the model is very tail heavy. As the size of the model attack vector increases however,

this begins to shift (becoming almost Gaussian).

This completes our presentation of results for the UNSW dataset defense for Laplace

noise placed after the first layer of autoencoder under attack from l − 1-norm attacks.
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7.1.2 USTC CNN-0 Differential Privacy Laplace Layer-1 Pro-

tection

We now present the results for our differential privacy approach for the USTC dataset

CNN-0 model. We again first showcase the accuracy and. robustness of the model for

malicious flows using multiple predictions.
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Figure 7.4: Laplace Layer1: Graph of USTC Accuracy on the classification of malicious
flows as well as the average calculated robustness of these flows to adversarial examples.

As seen in Fig. 7.1, the accuracy of the model degrades slightly more than for the

UNSW dataset. The accuracy almost immediately moves towards being around 90%.

However, in a likewise fashion, the average robustness is able to reach higher values in

this case as well. At an attack vector size Lattack = 0.7, the average robustness reaches a

level of 0.657. In fact, the average robustness does not begin to degrade until the attack-

vector/training size vector Lattack > 0.7. Like for the UNSW dataset, this initial results
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Figure 7.5: Laplace Layer1: Robust-
ness Distribution for USTC dataset
after training with noise for an l1-
norm attack vector of size 0.1.

Figure 7.6: Laplace Layer1: Robust-
ness Distribution for USTC dataset
after training with noise for an l1-
norm attack vector of size. 0.7.

further evidences a good trade-off for robustness to adversarial examples vs. accuracy.

For example, all of the targeted adversarial attacks that were presented in section 6.4

would all provably fail when using this defense with L=0.1 (where accuracy of the model

on malicious samples is upwards of 98%). We finally evidence a subset of the graphs

that showcase the distribution of robustness for varying attack/noise-training levels.

As seen in Figs 7.5-7.6, there remains a dichotomy in this particular calculation of

robustness. Either the examples that are found are extremely robust to adversarial

examples or they are very much vulnerable to attack. Only at an attack vector size

Lattack = 0.7 do we see the robustness levels begin to spread out. This accords with the

average values that we saw in Fig 7.4. This completes our presentation of results for

the USTC dataset defense for Laplace noise placed after the first layer of autoencoder

under attack from l − 1-norm attacks.
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7.1.3 CSE-CIC CNN-0 Differential Privacy Laplace Layer-1

Protection

We now present the results for our differential privacy approach for the CSE-CIC dataset

CNN-0 model. We first showcase the accuracy of the model on malicious flows using

multiple predictions. As seen in Fig. 7.7, the accuracy of the model remains near
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Figure 7.7: Laplace Layer1: Graph of CSE-CIC Accuracy on the classification of ma-
licious flows as well as the average calculated robustness of these flows to adversarial
examples.

perfect for small values of Lattack. Only when Lattack is above Lattack ≥ 0.7 does the

accuracy begin to degrade significantly. The robustness of the model also begins to

degrade at this value as well (so there is perhaps no reason to increase the training

vector beyond this value anyway). As with the two previous datasets, we see a very

good trade-off for small values of Lattack illustrating the benefits of this approach. We
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Figure 7.8: Laplace Layer1: Ro-
bustness Distribution for CSE-CIC
dataset after training with noise for
an l1-norm attack vector of size 0.1.

Figure 7.9: Laplace Layer1: Ro-
bustness Distribution for CSE-CIC
dataset after training with noise for
an l1-norm attack vector of size 0.7.

finally present a subset of the graphs that showcase the distribution of robustness for

varying attack/noise-training levels.

As seen in Figs 7.8-7.9, there remains a dichotomy in this particular calculation of

robustness. However, in this dataset, there are much more flows that retain a fairly

small robustness value.

This concludes our discussion of Laplace noise after the first layer of an autoencoder

in order to protect against l1-norm attacks.

7.2 DP Defense: Gaussian Noise After 1st Layer of

Autoencoder

In this section, we focus on using Gaussian noise after the first layer of an autoencoder

in order to protect against l1-norm attacks. Note that Gaussian noise incorporation

leads to (ε, δ) -differential privacy in our autoencoder. For these experiments we chose
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ε = 1 and δ = 0.05. This replicates the values chosen by Lecuyer et al. [47]. However,

by using Gaussian noise, we do not lose out on any of the differential privacy properties

upon which we are dependent. See our Background chapter for more details

For the Gaussian noise trained models, we ascertained their robustness to adversarial

l1-norm attacks. For this work, again we considered attack vectors Lattack that ranged

in size from 0.1 to 1.0.

7.2.1 UNSW CNN-0 Differential Privacy Gaussian Layer-1

Protection

We now present the results for our differential privacy approach for the UNSW dataset

CNN-0 model. We first present results that give the trade-off between model robustness

to adversarial examples and the accuracy on malicious flows.

As seen in Fig. 7.10, the results are marginally worse than for the Laplace case in

Section 7.1. We see in Fig. 7.10 that the robustness falls significantly after the attack

vector size Lattack = 0.5. In fact, the robustness level bottoms out when the attack

vector size Lattack = 0.9. We thus see from this graph that in general, while we still get

reasonable results for L ≤ 0.5, that using Gaussian noise cannot be recommended over

using Laplace noise for these types of attacks.

We finally provide a subset of the graphs that showcase the distribution of robustness

for varying attack/noise-training levels.

As seen in Figs. 7.11-7.12, there is a shift towards low amounts of robustness at an

attack vector size Lattack = 0.7. This accords with our average robustness size seem in

Fig. 7.10. This further confirms that Gaussian noise for higher l1-attack vectors sizes

does not result in better results than using Laplace noise.
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Figure 7.10: Gaussian Layer1: Graph of UNSW Accuracy on the classification of ma-
licious flows as well as the average calculated robustness of these flows to adversarial
examples.

Figure 7.11: Gaussian Layer1: Ro-
bustness Distribution for the UNSW
dataset after training with noise for
an l1-norm attack vector of size 0.1.

Figure 7.12: Gaussian Layer1: Ro-
bustness Distribution for the UNSW
dataset after training with noise for
an l1-norm attack vector of size 0.7.
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7.2.2 USTC CNN-0 Differential Privacy Gaussian Layer-1 Pro-

tection

We now present the results for our differential privacy approach for the USTC dataset

CNN-0 model. We now again present the picture of the trade-off between robustness

and accuracy.
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Figure 7.13: Gaussian Layer1: Graph of USTC Accuracy on the classification of ma-
licious flows as well as the average calculated robustness of these flows to adversarial
examples.

As seen in Fig. 7.13, we do not see the dramatic drop-off in robustness as we saw for

the UNSW dataset. However, despite this we again see that for these l1-norm attacks

that the Gaussian noise does not perform as well. We see an average robustness that

reaches a maximum value of 0.44 when the training/attack vector size Lattack = 0.5.

This however is significantly less than the maximum of 0.657 average robustness that we
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Figure 7.14: Gaussian Layer1: Ro-
bustness Distribution for the USTC
dataset after training with noise for
an l1-norm attack vector of size 0.1.

Figure 7.15: Gaussian Layer1: Ro-
bustness Distribution for the USTC
dataset after training with noise for
an l1-norm attack vector of size 0.7.

achieved with the Laplace noise. Furthermore, at a training/attack size vector L = 1.0,

we do see a dramatic drop-off in overall accuracy to 70.2%. As such, we confirm that

the Laplace noise gave us better results for both the UNSW and the USTC dataset.

We finally give a subset of robustness distributions for some of the attack vector

sizes.

As before in Figs. 7.14-7.15, we see the normal shift towards the center as the size

of the attack vector increases.

7.2.3 CSE-CIC CNN-0 Differential Privacy Gaussian Layer-1

Protection

We now present the results for our differential privacy approach for the CSE-CIC dataset

CNN-0 model. We first turn to see the trade-off between the accuracy and robustness

of the model.
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Figure 7.16: Gaussian Layer1: Graph of CSE-CIC Accuracy on the classification of
malicious flows as well as the average calculated robustness of these flows to adversarial
examples using

In Fig. 7.16 we see a much quicker drop-off for the accuracy than in the Laplace

case (see Fig. 7.7. However, for Lattack ≤ 0.3, we do see a good trade-off between the

accuracy and the robustness of the model.

We finally showcase a subset of the graphs that showcase the distribution of robust-

ness for varying attack/noise-training levels.

As seen in Figs 7.17-7.18, there remains a dichotomy in this particular calculation

of robustness for Lattack ≤ 0.7. However here we also see that for Lattack = 0.7 that the

distribution actually spreads out completely becoming almost Gaussian. We are not

entirely sure what caused this change in behaviour. We leave determining the reasons

behind given robustness distributions to Future Work.
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Figure 7.17: Gaussian Layer1: Ro-
bustness Distribution for CSE-CIC
dataset after training with noise for
an l1-norm attack vector of size 0.1.

Figure 7.18: Gaussian Layer1: Ro-
bustness Distribution for CSE-CIC
dataset after training with noise for
an l1-norm attack vector of size 0.7.

This completes our analysis of Gaussian noise after the first layer of an autoencoder

in order to protect against l1-norm attacks.
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7.3 DP Defense: Gaussian Noise Directly on Features

In this section, we focus on using Gaussian noise directly on input to autoencoder in

order to protect against l2-norm attacks. Note that using our formulation Laplace noise

cannot be used to protect our models from l2-norm attacks (this has to do with how

the sensitivity and norms are computed. For details see the Background section about

sensitivity). As a result of this, to protect against l2-norm attacks we focus only on the

approach discussed here. For these experiments for our differential privacy parameters

we again chose ε = 1 and δ = 0.05.

7.3.1 UNSW CNN-0 Differential Privacy Gaussian Noise Di-

rectly on Features Protection

We now present the results for our differential privacy approach for the UNSW dataset

CNN-0 model. We first look at the relationship between the robustness and accuracy.

As seen in Fig 7.19, the robustness of the model to adversarial examples never

goes above 0.23. Despite this, the accuracy of the model likewise does not decrease

significantly until the size of the attacking vector Lattack = 0.5. Furthermore, for attack

vector values Lattack < 0.3, there is a reasonable trade-off between the overall accuracy

on malicious flows and the robustness of the model.

We again highlight a subset of the distributions of the robustness under varying

attack vector sizes.

As seen in Figs. 7.20-7.21, the distribution of robustness switches orientation after

an attack vector size Lattack = 0.5. Furthermore, we found that Lattack > 0.5, the results

show that we are unable to get single values that are highly robust as well. As such, for

training this particular model, training for an attack vector Lattack > 0.5 could not be
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Figure 7.19: Gaussian Direct: Graph of UNSW accuracy on the classification of ma-
licious flows as well as the average calculated robustness of these flows to adversarial
examples

Figure 7.20: Gaussian Direct: Ro-
bustness Distribution for UNSW af-
ter training with noise for an l1-norm
attack vector of size 0.1.

Figure 7.21: Gaussian Direct: Ro-
bustness Distribution for UNSW af-
ter training with noise for an l1-norm
attack vector of size 0.5.
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recommended both due to decreases in overall robustness but also due to the decreases

in accuracy.

7.3.2 USTC CNN-0 Differential Privacy Gaussian Noise Di-

rectly on Features Protection

We now present the results for our differential privacy approach for the USTC dataset

CNN-0 model. We first showcase the trade-off between prediction accuracy (using

multiple predictions) and robustness.
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Figure 7.22: Gaussian Direct: Graph of USTC accuracy on the classification of ma-
licious flows as well as the average calculated robustness of these flows to adversarial
examples.

Unlike for the UNSW dataset, the average robustness continues to increase as seen in

Fig 7.22. However, for larger robustness values there is a somewhat significant decrease

in accuracy on the malicious flows. For example, in order to achieve a robustness of
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Figure 7.23: Gaussian Direct: Ro-
bustness Distribution for USTC after
training with noise for an l1-norm at-
tack vector of size 0.1.

Figure 7.24: Gaussian Direct: Ro-
bustness Distribution for USTC after
training with noise for an l1-norm at-
tack vector of size 0.7.

0.25, we only get an accuracy of 0.872. Whether this decrease in accuracy is worth

the increase in average robustness is a question that individual particular systems must

take into account.

We again highlight a subset of the distributions of the robustness under varying

attack vector sizes.

7.3.3 CSE-CIC CNN-0 Differential Privacy Gaussian Noise Di-

rectly on Features Protection

We now present the results for our approach for the CSE-CIC dataset CNN-0 model.

We now showcase the trade-off between prediction accuracy (using multiple predictions)

and robustness. Here we see very lacklustre results for Lattack ≥ 0.5. The robustness

goes to 0 as the amount of noise increases. This illustrates that for very large values

of Lattack that this defense is largely unable to cope. However again for small values of

Lattack ≤ 0.3, we again see a good trade-off in terms of robustness and accuracy.
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Figure 7.25: Gaussian Direct: Graph of CSE-CIC accuracy on the classification of
malicious flows as well as the average calculated robustness of these flows to adversarial
examples.

Figure 7.26: Gaussian Direct: Ro-
bustness Distribution on CSE-CIC af-
ter training with noise for an l1-norm
attack vector of size 0.1.

Figure 7.27: Gaussian Direct: Ro-
bustness Distribution on CSE-CIC af-
ter training with noise for an l1-norm
attack vector of size 0.5.
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We again highlight a subset of the distributions of the robustness under varying

attack vector sizes.

We again see a clear split again for smaller values Lattack, with some flows having

very high robustness and other flows having very small amounts.

This concludes our discussion of adding Gaussian noise directly on the features in

order to protect against l2-norm attacks.
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7.4 DP Defense: Poisson Subsampling for Privacy

Amplification

After performing the defences described in Sections 7.1-7.3, we wanted to determine

whether we could get better results using other properties of differential privacy. We

found that subsampling in conjunction with noise is a means of incorporating differential

privacy into a machine learning algorithm. Knowing this, we decided to subsample a

dataset while training our autoencoders. In particular, for this work, we performed

Poisson subsampling at a rate of 0.5. This in effect lowers the ε and δ values used in

differential privacy by half. See our Background chapter for more details. As a result

of this, while training our autoencoder, we could in effect lower the amount of noise

that is added while training. Because the standard deviation of the noise that we used

is linear in the size of ε, by subsampling by half, we could in effect halve the noise

standard deviation used while maintaining a value of total ε = 1.0.

For this part of the work, we performed Poisson subsampling only on the USTC

dataset whilst considering all of the attack vectors sizes Lattack from 0.1 to 1.0 and

noise placements (Laplace and Gaussian noise after the 1st layer of the autoencoder,

and Gaussian noise placed directly on the features) that we previously described. We

now succinctly describe the results of these experiments.

7.4.1 USTC CNN-0 Differential Private Noise for l1-adversarial

protection

We begin by illustrating some of the baseline results for this Poisson subsampled in-

stance. We firstly show how this noise incorporation affected the trade-off between

accuracy and robustness to l1-norm attacks for both Laplace and Gaussian noise types.
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[height=10cm,width=12cm]ch-results-defense/Figures/Poisson-USTC-Accurary-with-
Robustness.pdf

Figure 7.28: Graph of USTC Accuracy for both Laplace and Gaussian noise on the
classification of malicious flows as well as the average calculated robustness of these
flows to adversarial examples

As seen in Fig. 7.28, we achieve similar result in terms of accuracy for both the

Gaussian and the Laplace noise. In general, we see a somewhat more graceful drop-off

for the robustness. Accuracy, further, appears to about the same for both the Gaussian

and Laplace noise. For the l1-adversarial attacks using Poisson subsampling, Laplace

noise appears to have the best trade-off.

We finally showcase a subset of the graphs of the distribution of robustness for

varying attack/noise-training levels for Gaussian and Laplace noise. Overall for these

initial results, we see similar results to when we did not use Poisson subsampling for

privacy amplification.

We see in Figs. 7.29- 7.32 the distribution of for Laplace noise remains fairly bimodal

while the distribution for the Gaussian noise begins to spread out much more quickly.

7.4.2 USTC CNN-0 Differential Private Noise for l2-adversarial

protection

We again start by illustrating some of the baseline results for this Poisson subsampled

instance for the l2 Gaussian noise protected network. We first present the graph of the

trade-off between robustness and accuracy.

Here again we see a similar behaviour when compared to when we did not use

Poisson subsampling. However, we also see lesser values of robustness for larger attack

vector sizes Lattack > 0.5. This shows that that Poisson subsampling was relatively

ineffective in improving the trade-off between robustness and accuracy. We conclude
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Figure 7.29: Robustness Distribution
after training with Laplace noise for
an l1-norm attack vector of size 0.1.

Figure 7.30: Robustness Distribution
after training with Laplace noise for
an l1-norm attack vector of size 0.7.

Figure 7.31: Robustness Distribution
after training with Gaussian noise for
an l1-norm attack vector of size 0.1.

Figure 7.32: Robustness Distribution
after training with Gaussian noise for
an l1-norm attack vector of size 0.7.
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Figure 7.33: Graph of USTC Accuracy on the classification of malicious flows as well
as the average calculated robustness of these flows to adversarial examples.

Figure 7.34: Robustness Distribution
after training with Gaussian noise for
an l2-norm attack vector of size 0.1

Figure 7.35: Robustness Distribution
after training with Gaussian noise for
an l2-norm attack vector of size 0.7
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here by presenting a subset of the Poisson subsampled distributions of robustness for

varying attack/noise-training levels. Figs. 7.34-7.35 of the distributions of robustness

further confirm that there is a shift earlier on towards lower levels of robustness for the

Poisson subsampled autoencoder. As a result of this earlier shift, we generally see lower

levels of average robustness for this network.

This concludes our presentation of results for using Poisson subsampling for privacy

amplification within autoencoder while preparing our defense. We find in general that

its use led to somewhat mixed and inconclusive results.

7.5 Defence: Summary
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Figure 7.36: Graph of UNSW accuracy on the classification of malicious flows as well as
the average calculated robustness of these flows to adversarial examples on the l1-norm.
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Figure 7.37: Graph of USTC accuracy on the classification of malicious flows as well as
the average calculated robustness of these flows to adversarial examples on the l1-norm.
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Figure 7.38: Graph of CSE-CIC accuracy on the classification of malicious flows as
well as the average calculated robustness of these flows to adversarial examples on the
l1-norm.
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Chapter 8

Discussion

We set aside this chapter to discuss the meaning and implication of our results. We

specifically examine what are results means within the context of detecting malware

and what our approach evinces.

8.1 Adversarial Attacks

As shown in this work, practical adversarial examples in both the black-box and white-

box setting can be conducted on networks that make use of statistical information to

detect malware. We showed in particular that an adversary can perform a black-box

attack using only the returned labels for different types of flows. We acknowledge, how-

ever, that the adversary in this setting would need to know which statistical features

are being used by the network and the size of the input. This technically makes our

proposed black-box attacks somewhat ’grey’. This however is not a significant hurdle

that an adversary would need to overcome, given that there are truly only a handful

of feature subsets that an institution could use to classify flows. Furthermore, by in-

crementally changing key aspects of given flows until the adversary received different

classifications of the flows, the adversary could determine what features malware detec-
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tion system considered. In any case, using these ’grey’ attacks, we found that we could

transform upwards of 10% of the malicious flow test sets in all our datasets from being

classified as malicious to being classified as benign. For CSE-CIC dataset in particular,

an adversary could transform over 50% of malicious flows in appearing benign using a

Jacobian-based data augmentation approach to train a substitute model. Similarly, we

found that while we only transform around 5% of benign flows into appearing malicious

on the CSE-CIC dataset, we found that could transform over 12% of the benign flow

test set on the UNSW test set. Furthermore, on the USTC, we found that we could

transform over 40% of the flows. These types of attack evince the power of adversaries

to attack systems. By allowing 10% of attempted malware traffic to go undetected,

an adversary could effectively cripple a network. In addition, by transforming a large

amount of traffic (in this case upwards of 40%) into appearing malicious, the adversary

could potentially overwhelm a system and prevent network analysts from being able to

actually pinpoint real malware. Either of these methods could be devastating. Further,

as we showed here the adversary does not actually need many capabilities to perform

these attacks.

With more knowledge of the neural network while performing white-box attacks, we

found that the adversary can perform even more devastating attacks on a given network.

With an adversarial l1-norm attack bound Lattack = 0.5, an adversary could transform

over 30% of the UNSW malicious test set into appearing benign. Similarly, with a

l1-norm bound of Lattack = 0.5, an adversary could transform of 30% of UNSW benign

traffic into appearing malicious. For the USTC dataset, an adversary could transform

upwards of 10% of the malicious flows into appearing as benign with a Lattack = 0.3

l1-norm attack bound, Further, with an l1-norm attack bound of Lattack = 0.3, an adver-

sary could transform over 80% of the benign traffic into appearing malicious. Finally,

with a Lattack = 0.1 l1-norm attack bound, an adversary could transform upwards of
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75% of CSE-CIC dataset’s malicious flows into appearing benign. Again, these types of

attacks could have devastating effects on a given network meant to detect adversarial

flows.

8.1.1 Differences in Effectiveness

We address here why we found such different effectiveness for transforming malicious

traffic into appearing benign versus benign into appearing malicious. We think that this

primarily had to do with the way that resampled the datasets. Within both the UNSW

and the USTC datasets we used SMOTE in order to resample the statistical features

of the malicious flows. This was because in both there was a severe imbalance between

the benign and malicious flows. However, because of this resampling with SMOTE,

our malicious flows were very well clustered, and each point was surrounded their high-

dimensional space in many cases by other points. Since the malicious flows that were

used as the basis of the adversarial examples were from the same distribution as the

training set, large perturbations were needed to shift malicious flows into appearing

benign. As a result, creating adversarial examples for these points was more difficult.

In contrast, for the benign flows which did not undergo resampling (each point was

not synthetically created), creating adversarial examples was relatively effective. We

hypothesize that within their own high-dimensional space there was probably more

areas where adversarial examples could be created. This is all in contrast with the

CSE-CIC dataset which did not undergo sampling at all. In this dataset the benign-

>malicious adversarial examples were more difficult to create while malicious -> benign

adversarial examples were much easier to synthesize. We suspect that this in particular

had to do with how clustered the Botnet traffic for this dataset was (about a singular

point in the t-SNE plot). As a result, this traffic could be easily moved outside of this

cluster. In contrast, to transform a benign flow into a malicious flow was much more
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difficult since this would be changing much more of its placement in the 3D t-SNE

space.

These are only our thoughts. In order to test this for Future Work we plan try

other means of resampling in order to see if we get similar results for the USTC and

the UNSW datasets. See our Future Work chapter for more details.

8.2 Interpretability

Of key importance within this work is the interpretability of the adversarial examples

that we created. For example, what does it actually mean for an adversary to induct a

0.1 l1-norm change in a given test flow to create an adversarial example? Other works

like Siciu et al. [64] and Al-Dujail et al. [24] use either the malware binaries or binary

encoded features of a given malware for detection; however, the techniques that they

use to make their methods robust to adversarial examples are seemingly confounding.

For example, it is unclear why adding specific byte sequences at the end of a malware

would make it more robust to adversarial attacks. It is further unclear what the neural

networks are actually learning. Similarly, Wang et al. [76] use the first 784 encrypted

bytes of a given flow in order to classify it as malicious or benign. Here it is very unclear

what neural network could be learning in this encrypted data. This was one of the main

reasons that we chose to use statistical features within our work in order to classify the

flow. This gives us a clear understanding of what the neural network learned from the

training data and allows us to understand exactly what the adversarial attacks meant.

For this reason, we were able to specify what the adversary had to exactly in order to

create flows that would evade detection in Section 6.4. This dependence on statistical

features for interpretability of course comes at the expense of some amount of accuracy.

By only conducting adversarial attacks on the statistical features we somewhat limit
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the scope of possibilities for our attack and thus the effectiveness of some of adversarial

examples.

Although we have immediate interpretability of what our adversarial examples mean

since all we must do is correlate the changes back to the given statistical features, there

is still the question of which adversarial metric is best to protect against: l1-norm or

the l2-norm. As argued by both Lecuyer et al. [47] and Shamir et al. [63], protections

against one type of norm attack do not correlate to attacks against another norm attack.

Since we are dealing with statistical features the value of l2-norm is not immediately

clear. This is unlike for images, where l2 is a good norm because it is a good proxy

for the perceptibility a given change on an image. Here, we are mostly concerned with

individual changes to given features that an adversary would use in order to evade

detection. As such within this context, the l1-norm makes the most sense. We still

include the l2-norm results in this work in order to give a full picture of our approach

however. Furthermore, because the l2-norm values can be correlated back to the l1-norm

through bounds, it still has some amount of utility

Thus, taken as a whole, we have shown that real networks are vulnerable to adver-

sarial attacks, more specifically networks that use statistical features in order to classify

flows as malicious or benign. We further have shown that targeted attacks evidence

that real malware can be altered slightly to avoid detection.

8.3 How Our Defense Correspond to Actual Malware?

Here we consider what our approach means in terms of the features that we used.

Because we normalized our features to be between 0 and 1, a l1-norm difference on a

single feature corresponds an increase of 10% of maximum value encountered for that

given feature, a 0.3 l1-norm difference on a single feature would correspond to a 30%
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increase, etc. Obviously making a neural network robust to large changes would not

always be desirable. However, for our networks, making our network robust to these

changes did not lead to a large decrease in accuracy. The question of what a network

should be robust to and how much it should tolerate is a question that should be

answered on an individual basis. However, despite this our approach makes it so if an

adversary would want to perform an attack using adversarial examples as an approach,

for large values of ∆, he would be forced to change the malware in very large way. Once

changed, this malware could then be detected using other means or could become more

noticeable to a supplementary system. Simply our system would force an adversary to

incorporate large changes into their malware which could then disrupt their malware

flow, change their malware so significantly that it is no longer malware, or force them

to find another means of attacking the system. This is seen most evidently from our

section on targeted attacks. There we saw 0.1 l1-norm attacks against both the UNSW

and USTC CNN-0 models. In one example in order to evade detection, an adversary

would have needed to raise their bps (bits per second) by 2.13Kb. Thus, for a model

incorporating protection to 0.3 l1-norm attacks, an adversary could need to increase

their rate by 6.39Kb. This new adversarial malware could then be more easily detected

using traditional means.

8.4 Our Defense And Its Uses

Our attacks illustrated that networks that make use of statistical features are vulnerable

to adversarial attacks. However, based on our defense further showed that many of the

smaller adversarial examples can be defended against without sacrificing a significant

decrease in accuracy. We specifically found that by incorporating Laplace noise after the

1st layer of our autoencoder that we could manage relatively high robustness (depending
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on which volume of noise that we were trying to defense against). For example, we

managed to achieve robustness levels above 0.3 at the expense of 5% accuracy for

the USTC dataset by incorporating Laplace noise and our prediction procedure (see

Fig. 7.4). This evinces that our approach can be used for small ε values in order

to provide robustness to adversarial examples. Furthermore, this approach provides

provable robustness . Namely, this approach guarantees that adversarial examples

under a given robustness level calculated for a given flow cannot be created. For network

operators concerned about malware, this guarantee is outstanding.

In our results, we further see that in general for l1-norm defense that the Laplace

noise defense did better than the Gaussian noise defense. Accordingly, this makes

sense due to correspondence between the Laplace distribution and the l1-norm and the

Gaussian noise with the l2-norm. Throughout our analysis, we further saw continually

that our systems did better with the Laplace noise defense to l1-norm attacks than for

l2-norm attacks in general. Because our values are normalized to be within [0,1], this

difference makes sense. This is because within this range the l2-norm change values are

always seemingly smaller. As a result, a small l2-norm change might imply a large l1

change. Despite this, for small l2 attack vector sizes Lattack ≤ 0.3, we see that we still

get a reasonable trade-off between accuracy and the robustness

In our defense, for Poisson subsampling for privacy amplification, we saw mostly

mixed results from which we could draw no definitive conclusion. As a result, further

study of this property is needed in order to understand its trade-offs. By subsampling at

different rates or with different methodologies we could get different results. However,

here we draw no conclusions about its effectiveness.

Given our design, even when we do not achieve high robustness values, we can still

use the robustness values returned in order to prioritize how when certain flows are

investigated. For example, a flow with a robustness level of 0.01 could be investigated
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before a flow with a robustness of 0.3. Prioritizing responses to malicious traffic is a

significant issue within network security. Adversarial examples make this prioritization

even more difficult. This is because in most cases, a cut-off for the probability for

being labelled malicious is used to prioritize flows. However, adversarial examples and

flows of the sort can often completely switch a label (i.e. a flow that is nearly 89%

malicious can be flipped to being 99% benign). As a result, the return robustness level

can instead be used to prioritize response. It is a better metric because it truly gives a

concrete distance metric before a malicious flow can be labelled as benign or vice versa.

As a result, our proposed method of incorporating differential privacy into ensuring

robustness has the added feature of improving response levels as well.

8.5 Limitations

There are several limitations to this work. Specifically, we only look at the final flows

after they have completed. In other words, this work focused on detecting different types

of malware/flows after they had already occurred. More difficult would be determining

whether a flow was malicious or benign in the first few bytes and creating adversarial

examples based on that statistical information. We leave the investigation of this area

to future work.

Another limitation of this work is that we do not test these results in a real-world

setting. It would be interesting to see how the implementation of our procedure could

be used to improve the triaging approaches of real-world malware detection systems.

Lastly, we also do not explicitly consider the generalizability of systems to different

types of malware that the systems were not trained to detect. Malware detection system

must be able to detect unknown types of malware. We used our test sets as a proxy for

these unknown types of flows. However, it would be an interesting area for us to test
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these malware detection networks on unseen types of malware and create adversarial

examples from these flows.

Now that we have thoroughly discussed our results and their implications, we now

discuss some of the work we wish to continue on this project in the future.
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Future Work

In this section, we delve into possible future areas that we can explore in the future.

9.1 Different and Real-World Datasets

The most obvious area that we would want to explore is the use of different datasets.

Within this work, we used data from UNSW-NB15 [53], USTC-TFC2016 [75] (this

dataset also took a subset of flows from the CTU-13 dataset), and CSE-CIC-IDS2018 [4].

However, it would be interesting to extend our work to more updated and recent

datasets and to much larger ones as well. One possible dataset that we could use

in the full CSE-CIC-IDS2018 dataset [4] . For this work, we considered a subset

that only considered consisted of Botnet attacks. However, this dataset specifically

includes Brute Force attacks, DoS attacks (Hulk, GoldenEye, Slowloris, Slowhttptest,

Heartleech), Damn Vulnerable Web App web attacks, infiltration attacks, port scans

and Botnet attacks Applying our methods to the full updated dataset would allow us

to perceive how far our approach is applicable to different network settings and differ-

ent types of attacks. Furthermore, the full dataset is much larger than the datasets

considered in this work.
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In addition to the above dataset, we would also like to consider the ISCX dataset [38].

The ISCX dataset published by Draper et al. consists of 7 days of encrypted synthetic

network traffic that replicates real-world network attack traffic. The traffic was captured

using Wireshark and consists of a 28GB of data, which is again much larger than what

we considered in this work.

In addition to the above datasets, for future work we would apply our approach to

real user data from the University of Oxford in order to truly see the applicability of

the networks considered in a real-world setting.

9.2 Different Neural Network Models

Within this work we considered several different neural network models but focused

specifically on the CNN-0 model that gave us the best initial results. See Section 6.1

for more details. For future work we would like to implement and experiment with

several different neural network models. Specifically, we tested a model that charac-

terized traffic using timing information in conjunction with statistical measurements,

we would also like to attempt to use models that take into consideration the encrypted

byte information of individual flows in conjunction with statistical measurements. For

example, the methodologies of those like Wang et al. [70] and Wang et al. [73] consider

the byte distribution in addition to temporal features within their approaches. Further

within Wang et al. [73] specifically they make use of an (Long-Short Term Memory)

LSTM to learn information from temporal data. Our initial forays into using LSTMs

for our approach did not result in anything very fruitful. However, by making use of

different features and using LSTMs to analyse timing information we could perhaps get

better results for detecting malware. In all of the above portions however we would

again like to focus on changing statistical features when attacking the networks. Again,
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for interpretability we would like to only attack features that we can potentially explain.

However, in order to get better overall accuracy, these proposed models could perhaps

lead to better results.

9.3 Different Feature Subsets

As noted earlier, we used a subset of Piskozub et al’s. [59] features for the USTC dataset.

However, in would be interesting to ascertain what feature subsets would lead to the

best accuracy for our network and how changing the sizes of the given subset could

potentially change how effective adversarial attacks would be on the network. Once

this initially done, we would also like to apply a similar approach to the UNSW dataset

and the CSE-CIC-IDS2018 dataset.

9.4 Different Ways of Adding Differential Privacy

In this work, we focused on adding differential privacy after the 1st layer of an autoen-

coder and directly on the features. However, despite this focus, there are several other

ways of adding differential privacy to these networks to make them robust to adversarial

examples. For example, the autoencoder could be scrapped and instead the model itself

could be trained with noise after one of its initial layers. Furthermore, noise could be

placed deeper within the network as well.

Lastly, we considered using Poisson subsampling in order to improve the results of

our experiments. This ended up giving us mixed results with no clear conclusion being

drawn on its benefits. Future work would include other mechanisms of subsampling

besides Poisson and different sampling rates to see if they resulted in better results.
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9.5 Different Ways of Sampling the Datasets

As mentioned earlier in this work, we used SMOTE in order to resample the malicious

flows in our dataset due to the imbalance between malicious and benign flows. How-

ever, based on our results, this led to differing behaviours in terms of our network’s

susceptibility adversarial attacks (i.e. benign flows -> malicious flows were easier to

create while malicious -> benign flows were more difficult). It would be interesting to

see if using other methods of sampling really caused this behaviour or whether it was

an inherent characteristic of the networks that we used. For this reason, we propose

in future work to try other means of resampling including sampling with replacement,

Poisson sampling with replacement, among other in order to see if we get different

behaviours.

9.6 Randomized Smoothing for Certified Robustness

The last technique that we wish to try is randomized smoothing. Proposed by Cohen et

al. [37], this smoothing has been found to provide certifiable protection to adversarial

examples. After projecting our features to a 784 or 1024-dimensional space randomized

smoothing (which we described in the Background chapter), we would apply randomized

smoothing in order to provide certifiable robustness. This approach published during

the summer of 2019 takes inspiration from Lecuyer et al. [47] so it would be interesting

to compare results when this novel approach is applied in our own domain.
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Conclusion

We demonstrated in this work that (1) neural networks that detect malware are vul-

nerable to adversarial examples and (2) that by incorporating differential privacy as

well as a multiple prediction scheme for labelling can make models that detect malware

robust to these examples. More concretely we did the following:

1. We implemented several different neural networks that differentiate malicious

traffic from benign traffic for the UNSW-NB15 [53] and CSE-CIC-IDS2018

datasets [4] and that differentiate malware traffic from benign traffic for the

USTC-TFC2016 [75] dataset. Using our methodology, we manage to achieve

98%, 99.89%, and 99.80% on the UNSW,USTC, and CSE-CIC datasets respec-

tively.

2. We implemented two different architectures to show that more fine-grained anal-

ysis of these datasets can be conducted in order to differentiate different types of

malicious/malware flows.

3. We illustrated our best model’s vulnerability to both black-box and white-box

types of attacks. We particularly show that an adversary could potentially trans-
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form over 40% of the benign flows in a test into appearing malicious within the

USTC dataset using black box methods. This same adversary could also trans-

form at least 10% of malicious flows into appearing benign using only black box

methodologies in all considered datasets. For the CSE-CIC dataset we can trans-

form over 75% of the malicious flows into appearing benign. We then further

illustrate how a more knowledgeable adversary in a white-box setting could im-

prove upon these results to transform over 30% of UNSW malicious flows into

appearing benign, over 80% of USTC’s benign flows into appearing malicious,

and 5% of CSE-CIC benign flows into appearing malicious. We present attacks

of this sort for both the l1 and l2 norms.

4. We illustrated targeted attacks on our networks to show that a knowledgeable

adversary could attack single statistical features in order to create adversarial

examples. We then correlated these changes in features to real malware.

5. We demonstrated how differential privacy can be used in order to make models

robust to adversarial examples.

6. We demonstrated that other methods of adding differential privacy using Poisson

subsampling to our models can lead to differing and sometimes better results.

7. We finally showed that using our approach, an adversary would be forced to

change a given malware by a large amount in order to create an adversarial ex-

ample against a given model.

8. We showed that a metric used within our differential privacy approach can be

used a form of prioritization for investigating malicious flows.

This work showed that while maintain a relatively high accuracy that for small

perturbation attack vector sizes Lattack < 0.3, we could make our models robust to
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adversarial attacks. We further illustrated in this work how adversarial the robustness

calculation proposed by Lecuyer et al. [47] can also be used to manage prioritization

of malware investigation. Namely because adversarial examples can easily flip SoftMax

probabilities, they are not reliable metrics for determining which flows to investigate.

However, our metric is entirely robust as it determines an actual ∆ that characterizes

the distance of a given test instance to being labelled differently. Lastly in this work,

we proposed additional steps that can be taken in order to improve upon this work and

continue to make malware detection systems robust to adversarial examples and more

reliable systems overall.
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