
GENerateZ: Automatic De Novo Design of
Anticancer Drugs using Transcriptomic Data,

Genetic Algorithms, and Variational
Autoencoders

Hans William Alexander Hanley
Word count: 11, 972

Submitted in partial completion of the

Master of Science in Statistical Science

I hereby certify that this is entirely
my own work unless otherwise stated.

Michaelmas 2020



Acknowledgements

I would like to thank Professor Garrett M. Morris for guiding me throughout the course
of this work. Without his feedback, suggestions, and help, this work would have
not been possible.

I would also like to thank my parents and siblings: Patricia, Allison, Samantha,
Jonathan, Ashley, and Arielle Hanley whose support throughout the pandemic enabled
me to stay sane and focus on this project.

Lastly, I would like to thank the Daniel M. Sachs scholarship for funding me during
my time at Oxford. Its support was invaluable to allowing me to complete this work.



Abstract

We propose a novel machine learning architecture and technique for de novo drug discov-
ery of anti-cancer drugs by using discrete representations of drugs’ chemical compositions
and the transcriptomics of targets. In particular, we generate novel compounds optimized
for high efficacy against specific types of cancerous cells.

First, we train a variational autoencoder (VAE) to convert discrete representations
(SELFIES) of drug-like molecules to and from a multidimensional latent space. By
utilizing the advanced scheduling technique cyclical annealing proposed by Fu et al.,
we avoid VAE posterior collapse. This advancement allows the extraction of highly
meaningful latent features from discrete representations. As proof of the latent space’s
meaningfulness, we discover the distribution of molecules in the latent space follows
a gradient of desirable chemical properties (Quantitative Estimate of Drug-Likeness
and Synthetic Accessibility); i.e. molecules with high values cluster in one region of
the latent space, and molecules with low values cluster in another. These properties
are important criterion for pre-clinical drug discovery and discovering this gradient
allows for efficient optimization.

Second, we train a separate Transformer decoder to map pretrained latent embeddings
of molecules back to their chemical representations. We show that this separate and more
powerful decoder can more effectively and easily map diverse sets of latent representations
back into compounds than the original decoder in the VAE. This essentially turns our
VAE into a highly efficient feature extractor and allows for more exploration of the
chemical space created by the VAE.

Last, having created a highly information-dense latent space model and an efficient
decoder, we jointly train the same VAE model with a separate auxiliary network designed
to predict drug-like molecules’ efficacy IC50) against a particular subset of cancer cell
targets from their latent representations and the transcriptomic profiles of cancer cells.
This joint training causes the latent space to develop gradients for a particular drug-like
molecules’ efficacy (IC50) against these particular targets. We discover that by utilizing
this approach, we can accurately predict IC50 efficacy from VAE latent representations
and transcriptomic data with an overall Pearson correlation of 86.78 on a test set. Using
this approach, we show that by using Bayesian optimization and genetic algorithms,
we can optimize drug-like molecules’ efficacy against a particular cancer target. We
illustrate the usefulness of this approach by generating hundreds of novel potent drug



candidates, optimized for efficacy against a group of sarcoma cells. We verify these novel
candidate drugs by comparing them to existing compounds with known efficacy against
corresponding cancer type. We give an example an optimized drug:

CCC1=C2C=C(C=NC2=NC3=C1ON4C3=CC5=C(C4=O)COC(=O) C5(CC)O)C

We wish for our approach, which leverages the latest improvements in text generation
from natural language processing, to be a step toward improving success rates of targeted
and personalized drug discovery against cancers.



Contents

List of Figures vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Desirable Drug Properties . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Transcriptomics . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Simplified Molecular Input Entry System (SMILES) . . . . . . 11
2.2.4 DeepSMILES . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Self-Referencing Embedded Strings (SELFIES) . . . . . . . . . 12
2.2.6 SPVec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Posterior Collapse . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Cyclical KL Annealing . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Implicit Latent Codes . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Additional Machine Learning Algorithms . . . . . . . . . . . . . . . . 18
2.4.1 Machine Learning for Manipulating the VAE Latent Space . . . 18
2.4.2 Machine Learning Algorithms for Predicting Chemical Toxicity 22
2.4.3 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . 25

3 Experimental Setup 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 ChEMBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 ZINC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 IC50 Sensitivity: GDSC . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Toxicity: DrugBank, KEGG, TOXNET, T3DB . . . . . . . . . 28

3.3 Machine Learning Setup . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



Contents vi

4 Experiments 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Modelling Compounds: Variational Autoencoders and Transformers . . 30

4.2.1 Decoding Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Tanimoto Similarities . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Compounds Near Ibuprofen in Latent Space . . . . . . . . . . . 35
4.2.4 QED, logP, and SA Scores in the Latent Space . . . . . . . . . 36

4.3 Predicting log10 IC50: Attention Based Neural Networks . . . . . . . . 39
4.4 Optimizing the Latent Space for Predicting log10IC50 . . . . . . . . . . 44
4.5 Predicting Toxicity with Ensembles: Random Forests, Extra Trees, DARTs,

Neural Nets, and SVMs . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Optimizing IC50 and Creating Realistic Drugs . . . . . . . . . . . . . . 49

4.6.1 Bayesian Optimization (BO) . . . . . . . . . . . . . . . . . . . 51
4.6.2 Genetic Algorithm (GA) . . . . . . . . . . . . . . . . . . . . . 51
4.6.3 Drug-likeness and Synthesizability Optimization . . . . . . . . 52
4.6.4 IC50 Optimization Against the TE-12 Cell Line . . . . . . . . . 55

5 Discussion 62
5.1 Modelling Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Predicting Toxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Predicting log10 IC50 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Optimizing Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Google Colab Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Appendices

A Additional Graphs 67
A.1 Tanimoto Similarities . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B Selected Code 72

References 149



List of Figures

2.1 KL Regularization term in Cyclical Annealing. Figure from [40]. . . . . 16
2.2 Diagram illustrating the network structure of the implicit latent model

VAE. Figure from [17]. Xi are time-series inputs at time i, hi are hidden
states computed by the model for time step i. For details on multi-layer
perceptrons (MLP), Long short-term memory (LSTM) see Section 2.4. . 17

2.3 Sigmoid, Tanh, and ReLU. Figure from [59] . . . . . . . . . . . . . . . 19
2.4 LSTM Cell. Figure from [42]. . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Multi-headed Attention. Figure from [64]. . . . . . . . . . . . . . . . . 21
2.6 Decoder-Layer and resulting full Decoder. Figure from [1]. . . . . . . . 22
2.7 SVM with dividing hyperplane H and margin M for a two-dimensional

dataset (x1,x2). Figure from [33]. The left shows a completely separable
dataset while the right shows an inseparable set. . . . . . . . . . . . . . 23

4.1 Variational autoencoder and training process. x is the discrete input vector,
µ are the mean values calculated for the latent dimensions, σ are the
standard deviations for the latent dimensions and z is the sampled latent
representation. Encoder and Decoder are neural networks. Shows an
example for the cancer drug Doxorubicin. . . . . . . . . . . . . . . . . 30

4.2 Hexbin plots and distribution histograms of the Tanimoto similarities of
4000 random chemical compounds from the ChEMBL SMILES test set
against a single compound after projecting their latent representations
using linear PCA. Identical pairs of molecules have a Tanimoto similarity
of 1 and are coloured yellow, while less similar molecules are green, and
completely dissimilar molecules are dark blue. . . . . . . . . . . . . . . 35

4.3 Chemical compounds in the vicinity of the Ibuprofen with their Euclidean
distance (ED) in the latent space and Tanimoto Similarity (TS). . . . . . 35

4.4 Hexbin plots of mean QED, logP, and SA scores of 4000 random chemi-
cals compounds from the ChEMBL test set after projecting using linear
PCA the latent representations of the cyclically annealed VAEs. . . . . 36

4.5 Hexbin plots of mean QED, logP, and SA scores of 4000 random chemi-
cals compounds from the ChEMBL test set after projecting using linear
PCA the latent representations from implicit VAE models. . . . . . . . 37

vii



List of Figures viii

4.6 Hexpolot of mean QED, logP, and SA scores of 4000 random chemicals
compounds from the ZINC SMILES testing test after projecting latent
representations using linear PCA. . . . . . . . . . . . . . . . . . . . . . 38

4.7 Model workflow to predict IC50 . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Calculation of gene embeddings. Figure from [41]. Gene subset is

concatenated with itself after one version is with put through linear layer
and a Softmax layer to compute an attention distribution (αi). . . . . . . 40

4.9 Calculation of contextual embeddings [41]. Gene attention output and
encoded smiles are put through A contextual attention (CA) layer. The
CA layer then outputs an attention distribution(αi) over the SMILES
encoding, in the context of transcriptomic profile. . . . . . . . . . . . . 41

4.10 Prediction of log10IC50 using transcriptomic data and SMILES latent
embeddings. The model was fitted in log space. RMSE was calculated
after normalizing log10IC50 on a [0,1] scale. . . . . . . . . . . . . . . . 41

4.11 Prediction of log10IC50 using transcriptomic data and DeepSMILES
latent embeddings. The model was fitted in log space. RMSE was
calculated after normalizing log10IC50 on a [0,1] scale. . . . . . . . . . 42

4.12 Prediction of log10IC50 using transcriptomic data and SELFIES latent
embeddings. The model was fitted in log space. RMSE was calculated
after normalizing log10IC50 on a [0,1] scale. . . . . . . . . . . . . . . . 42

4.13 Normalized [0,1] log10 IC50 values for chemical compounds after project-
ing using linear PCA against the UMC-11 cell line, a cell of a carcinoid-
endocrine tumour affecting the lung. . . . . . . . . . . . . . . . . . . . 44

4.14 Prediction of log10 IC50 using transcriptomic data and SMILES latent
embeddings with IC50 latent shaping. The model was fitted in log space.
RMSE was calculated after normalizing log10IC50 on a [0,1] scale. . . . 45

4.15 Prediction of log10 IC50 using transcriptomic data and DeepSMILES
latent embeddings with IC50 latent shaping. The model was fitted in log
space. RMSE was calculated after normalizing log10IC50 on a [0,1] scale. 46

4.16 Prediction of log10IC50 using transcriptomic data and SELFIES latent
embeddings with IC50 latent shaping. The model was fitted in log space.
RMSE was calculated after normalizing log10IC50 on a [0,1] scale. . . . 46

4.17 Summary of the VAE-DeepSMILES embeddings for predicting toxicity. 48
4.18 Example of optimization of normalized [0,1] log10IC50 in the latent space. 49
4.19 Distribution of QED and SA Scores of found cancer drugs using GA

optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.20 Distribution of log10IC50 values in discovered cancer drugs using GA

optimization compared to clinically approved cancer drugs. . . . . . . . 56



List of Figures ix

4.21 Distribution of log10IC50 of clinically approved cancer drugs and de novo
compounds proposed by GA optimization using SELFIES IC50 shaped
latent embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A.1 Tanimoto similarities of 4000 random chemicals compounds from the
ChEMBL test set against a single compound after projecting using linear
PCA DeepSMILES latent representations. . . . . . . . . . . . . . . . . 67

A.2 Tanimoto similarities of 4000 random chemicals compounds from the
ChEMBL test set against a single compound after projecting using linear
PCA SELFIES latent representations. . . . . . . . . . . . . . . . . . . 68

A.3 Tanimoto similarities of 4000 random chemicals compounds from the
ChEMBL test set against a single compound after projecting using linear
PCA Implicit SMILES latent representations. . . . . . . . . . . . . . . 69

A.4 Tanimoto similarities of 4000 random chemicals compounds from the
ChEMBL test set against a single compound after projecting using linear
PCA Implicit DeepSMILES latent representations. . . . . . . . . . . . 70

A.5 Tanimoto similarities of 4000 random chemicals compounds from the
ChEMBL test set against a single compound after projecting using linear
PCA Implicit SELFIES latent representations. . . . . . . . . . . . . . . 71



1
Introduction

1.1 Motivation

Every nine years since the 1950s, the United States Food and Drug Administration (FDA)

has approved half as many drugs per billion USD invested, than in the previous nine

years. In the last few years, fewer than 0.01% of proposed candidate drugs have obtained

market approval (with often a 10-15 year market release cycle) [56]. Discovering and

screening new drugs has thus become extremely difficult. Compounding the difficulty

of obtaining regulatory approval, the chemical space of bioactive drug-like compounds

contains approximately 1030−1060 different molecules [48]; finding and screening new

drugs by enumeration is computationally impossible. Finding new compounds with

high efficacy and low toxicity has thus become a key bottleneck in drug research and

development [67]. One of most expensive and time-consuming processes, in particular,

is the discovery of new anticancer drugs. Over 34% of drug companies’ investment

funds go toward the development of anticancer compounds [38]. Thus, being able to

design and create anticancer drugs more effectively could both speed up research, save

billions of dollars, and save lives.

At the same times as this slowdown in drug research efficiency, the field of machine

learning has blossomed over the past ten years. New approaches have enabled significant

advances into how to better design compounds tailored to specific diseases. Geeleher

1



1. Introduction 2

et al. [21] showed that by taking transcriptomic data (DNA expression), researchers

could accurately predict cells’ sensitivity to particular drugs. Gómez-Bombarelli et

al. further demonstrated that compounds could be represented continuously in a latent

space and optimized for specific properties using machine learning approaches [24].

Mancia et al. [41] further illustrated that machine learning could be utilized to predict

a drug’s efficacy against specific genomic profiles by using a subset of genes. Finally,

Pu et al. [49] showed the public datasets of available drugs can be used to estimate

a drug’s probability of being toxic. These approaches have bolstered the promise of

personalized drug therapy [41], faster drug discovery, and more efficient drug screening.

They have illustrated that by combining information about the molecular structure of

compounds, the genetic information and data about drug responses, novel compounds and

even optimized drugs can be automatically designed and screened for toxicity, reducing

one of the major bottlenecks to drug development.

Given these novel approaches to drug discovery, this work focuses on developing a

novel approach to designing new anticancer compounds, optimized for high efficacy and

low toxicity, and targeted at specific genomics profiles. By utilizing the latest develop-

ments in machine learning, we show how a variety of these methodologies can automate

discovery of drugs, personalized medicine, and speed up the drug discovery pipeline.

1.2 Related Work

The closest analogue of our work is Automatic Chemical Design Using a Data-Driven

Continuous Representation of Molecules by Gómez-Bombarelli et al. [24]. Gómez-

Bombarelli et al. utilized a variational autoencoder to convert discrete representations of

compounds to and from a continuous latent space. By training an auxiliary network to

predict desirable properties like aqueous solubility during training, they managed to shape

the continuous representation of molecules effectively to have gradients in directions of

desirable properties (i.e. drugs with a given property were all in one part of the latent

space, while those without it were in another). Gómez-Bombarelli et al. then optimized

specific desirable drug-like properties in order to generate promising drug candidates.

Grechishnikova et al. [25] used an alternative approach based on machine translation.
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They attempted to decode specific drug compounds by performing translation from the

amino acids of target proteins to specific drugs. (Amino acids are the building blocks of

proteins, which together with peptides, DNA, RNA, lipids, sugars, metabolites, and other

molecules make up the cell [45].) Aumentado-Armstrong [3] optimized the latent space of

a variational autoencoder to generate molecules with high binding affinity to target specific

protein sites. Mendez-Lucio et al. [43] used a generative adversarial network (GAN) to

design novel compounds against desired targets, represented by their gene expression

signatures. We note here (because their approach is similar to ours) as does Born et al. [10],

there exists a major issue with this approach. Over 97% of anticancer drugs fail in clinical

trials. Often the mechanism suspected for providing a drug’s efficacy is incorrectly

identified. Lin et al. [36] further showed that in ten drugs in ongoing trials, all of the

proposed modes of action were inaccurate. This undermines the approach of using target

identification for the discovery of potential drug candidates. Finally, Born et al. [10] used

reinforcement learning and transcriptomic data to optimize and bias compound generation

from a variational autoencoder to be effective against individual cell lines.

1.3 Contribution

In this work we seek to generate novel anti-cancer drug candidates, in silico, aimed at

specific cancer cell targets and then optimize them for high efficacy and screen them for

low toxicity, also in silico. To do this, we utilize a variational autoencoder to create highly

meaningful representations of chemical compounds in a continuous low-dimensional

space. From these representations we predict several desirable properties including

QED (quantitative estimate of drug-likeness); solubility in water (logP, or the base-ten

logarithm of the water-octanol partition coefficient); and solvent accessible surface area

(SAS). In addition to calculating these important drug properties, we then seek to shape

the latent space of our variational autoencoders to be responsive to the transcriptomic

profile of given cell lines (i.e. compounds with low efficacy are in one area of the latent

space, while those with high efficacy are in another). Using this shaped and highly

information-dense latent representation, we seek to predict compounds’ toxicity and

efficacy (as IC50) on an individual cell line conditioned on its transcriptomic profiles.
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Finally, we seek to optimize compounds’ efficacy against individual cancer cell lines

and against particular types of cancer using a genetic algorithm. This work is sectioned

then into five main algorithmic components.

First, we train a variational autoencoder to take discrete chemical representations of

drug compounds to and from a latent space. Our variational autoencoder further uses

several techniques to ensure the high information density of the latent space. We utilize

specialized annealing schedules and implicit latent codes. Recent works have shown these

techniques to vastly improve the information density of latent spaces. We furthermore

seek to shape the latent space of our variational autoencoder to create a gradient for the

efficacy of chemical compounds against particular cell lines. This allows us to predict

efficacy values more effectively downstream from the latent space and to optimize our

proposed novel chemical compounds more efficiently. As far as we know, we are the

first to shape the latent space of a variational autoencoder specifically to have a gradient

for the efficacy of chemical compounds against particular cell-lines.

Second, we train a specialized transformer decoder to take pre-trained embeddings

of compounds from the latent space back to their corresponding discrete chemical

representations. This approach enables more locations of the continuous latent space

to be accurately decoded back to discrete representations. As far as we are aware, we

are the first to do this within this context.

Third, we develop a novel architecture to predict the efficacy of proposed compounds

against particular cell lines. We take a compound’s latent space representation, which is

informationally dense and the transcriptomic data of cell lines, outputting the efficacy

of the proposed drug.

Fourth, we develop a means of predicting the toxicity of compounds from their latent

space representation using an ensemble of different machine learning algorithms including

random forests, extra-trees, and quadratic discriminant analysis.

Fifth, we use both Bayesian optimization and a genetic algorithm to optimize proposed

anticancer compounds. We show that by using our predictor of a candidate compound’s

efficacy against a particular cell line, we can move within the latent space to make

it more potent. Utilizing our more powerful decoder, which is able to decode more
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places within the latent space, we can finally obtain highly potent and specialized novel

compounds. We then apply this same approach to find new compounds that are designed

to be effective against particular types of cancer/histologies and cancer sites (i.e. lung,

breast etc). We finally rank our novel compounds using their efficacy against particular

cell lines and against specific histologies.

We show in this work the high probability of personalized medicine and how machine

learning and novel statistical techniques can be used efficiently to discover and screen new

drug candidates. Our work can be used for a variety of purposes most notably specialized

medicine. Because we utilize the genetic information of particular patient’s cells, novel

proposed drugs can be developed specifically for given patients. Most importantly our

approach can be used to generate a plethora of novel drug candidates by aggregating

large batches of patient genetic data. New drugs can be designed to target specific types

of cancer and screened efficiently and easily using our method.



2
Background

2.1 Introduction

First, we give background on drug discovery. We further discuss several recent develop-

ments in the field of in silico (by use of computer) drug discovery. We then showcase

machine learning frameworks that have been developed to assist in silico drug discovery.

Second, we give an overview of the main machine learning technique that we utilized

in this work: variational autoencoders. We elaborate on the details on how we solved

a major issue for variational autoencoders: posterior collapse.

Last, we give a brief overview of several machine learning algorithms that we used

to predict various quantities and characteristics of chemical compounds.

2.2 Drug Discovery

Eroom’s Law states that, since the 1950s, the productivity of the drug discovery pipeline

(measured by the number of FDA approved drugs per invested USD) halves every nine

years [57]. Less than 0.01% of synthesized drug candidates obtain market approval

and these compounds often have a market release schedule of 10-15 years. Costs have

risen in tandem with this productivity slowdown, ranging from one to three billion

USD per drug [56].

6
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Decision Point Criteria for Decision Evidence Used
Choice of Disease Patient Need; Commercial Aspects Statistics on disease dis-

tribution
Target Selection "Validated target" (.i.e. druggable) Biological studies
Screen library assembly Chemistry with no liabilities, ease

of synthesis
Cheminformatics analy-
sis of chemical space

Assay development Predictivity; reproducibility; price Experience of biologists
Screen/hit list triaging Data quality; certainty of TPR and

FPR
Experience of screeners

Lead Optimization On-target and Off-target activities;
pharmacological properties

Gene-expression arrays;
more complex assay sys-
tems

Pre-clinical studies Efficacy and side-effects Animal experiments
Clinical studies Efficacy and side-effects Large human testing
Approval Efficacy and side-effects Results from pre-

clinical and clinical
studies

Table 2.1: Some of the typical decision points in a drug discovery project. This chart illustrates
the many points of failure in drug discovery [65]. This work focuses on the lead optimization
stage.
As seen in Table 2.1, there are a many stages at which a promising drug candidate can fail.

The lower efficiency of drug discovery though has been attributed to the high dropout

rate of candidate compounds in some of the early stages of the pipeline. Drug candidates

must be properly screened in earlier phases; therefore ADMET (absorption, distribution,

metabolism, excretion, toxicity) assessments and high-throughput screenings are essential.

Already 97% of anticancer candidate drugs fail in clinical trials in the USA and never

receive approval, which further emphasizes the need for more intensive screening. The

costs of the latter clinical phases are simply overwhelmingly prohibitive and any tougher

pre-screening approach that reduces these failures’ number is imperative.

A major issue in pre-screening is the exploration of chemical space which is estimated

to contain∼ 1030−1060 drug-like molecules with bio-active properties. Finding a method

of effectively exploring this chemical space and pre-screening the molecules has thus

occupied a great deal of research.

2.2.1 Desirable Drug Properties

We present background on four different criteria used to determine the promise of a

drug: logP, QED, SA score, and IC50.
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Water-octanol partition coefficient: logP

People often prefer to take a pill rather than have an injection. The partition coefficient

(P) gives the propensity of a ’neutral compound to dissolve in an immiscible biophasic

system of lipid (fats, oils, organic solvents) and water [7]. Accordingly, it measures

how much of the compound dissolves in the water portion versus the organic portion of

the solution. A negative value means that a compound is hydrophilic (dissolves more in

water). A positive value indicates that the compound is lipophilic (dissolves more in the

lipids). Using log of this value (logP) as a shorthand, researchers can determine whether

a substance can be absorbed by humans or other types of living tissue.

Drug candidates are often screened by their computed logP value. In general, a

compound intended for oral administration should have a logP less than 5 [9].

Quantitative Estimation of Drug-likeness: QED

The Quantitative Estimation of Drug-likeness or QED is a score used to evaluate a

drug-like compound’s favourability. Before the advent of this score, drug-likeness was

normally assessed using Lipinski’s Rule of Five [9]. Lipinski’s Rule of Five states that

a compound is unlikely to exhibit desirable absorption or permeation when two of or

more of the following are fulfilled:

1. the molecular weight is greater than 500 Da (Daltons).

2. the calculated logP is greater than 5.

3. there are more than 5 hydrogen-bond donors or the number of hydrogen-bond

acceptors (N and O atoms) is greater than 10.

However, in the past, Lipinski’s rule caused researchers to filter out promising candidates

and sometimes future treatments. In response QED was proposed as a quantitative

measure of several multidimensional criteria to assess a compound’s drug-likeness. QED

values range from 0 (all properties unfavourable) to 1 (all properties favourable) [9]. For

more information on its exact calculation see [9].
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Synthetic Accessibility Score: SA Scores

Synthetic Accessibility Score measures the ease of synthesizing a particular compound.

Developed by Ertl and Schuffenhauer, SAS combines information about the chemical

fragments within individual compounds and experimental data of synthesized com-

pounds [16].

In order to build the criteria for SA scores, a subset of 1 million compound structures

from the online database PubChem [32] were fragmented into their components. These

fragments were then scored according to their frequency of occurrences, with the most

frequently occurring receiving the highest scores. In addition to these fragment counts,

other factors such as ring complexity are considered in formulation of the score [16].

SA scores are on a scale of 1 to 10, with 1 being readily synthesized and 10 being

nearly unsynthesizable [16].

Half-Maximal Inhibitory Concentration: IC50

The half-maximal inhibitory concentration or IC50 is a measure of a drug’s efficacy. It

measures how much of a drug is needed to inhibit a biological process by 50%. IC50 is

thus an excellent measurement of a biological process’s sensitivity to a given compound.

For cancer research especially, IC50 values provide a valuable way of examining a drug’s

potency [4]. IC50 are given in molars (M). Potent inhibitors are those with IC50 values

on the order of 10−9 M (i.e. nM), Often IC50 values are converted to the negative log10

scale: (pIC50) for simplicity. However, in this work we use log10 IC50 in order to be

consistent with previous works that predict IC50 [41, 13].

Tanimoto Similarities

Separate from the above four drug properties, chemists often want to know the similarity

between two compounds. Chemists and researchers often use a similarity measure

called the Tanimoto similarity between the chemical fingerprints of two molecules [5].

Fingerprints are an abstract way of representing certain chemical structural features of

molecules [14, 55]. Researchers generally consider two structures to be similar if their

Tanimoto similarity is greater than 0.85 [14]. Tanimoto similarities generally use Daylight
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fingerprints (fingerprinting techniques developed by Daylight Chemical Information

Systems Inc. [14]) to calculate Tanimoto similarities.

In addition to the above four characteristics and Tanimoto similarities, researchers

also must understand biological environments into which drugs are placed. One of the

most important aspects of these environments in humans is gene expression. A measure

of this expression is given by transcriptomics.

2.2.2 Transcriptomics

The human genome is made up of deoxyribonucleic acid (DNA), long double-helical

molecules that contain information about how to create and maintain the functionality

and structure of cells [63]. Specifically, the instructions within DNA consist of four

different chemicals: cytosine (C), guanine (G), adenine (A), and thymine (T). These

four chemicals are repeated in different orders and lengths creating 20,000 to 25,000

different genes in humans.

However, DNA must be read and transcribed into ribonucleic acid (RNA) for its

instructions to be carried out. The transcribed gene readouts or RNA are called transcripts

and the transcriptome is the collection of all the RNA in a cell [63]. A particularly

important type of RNA is messenger RNA (mRNA). mRNA transcripts are delivered

to ribosomes (molecular structures in a cell) that then translate the mRNA in order to

assemble building blocks called amino acids into structures called proteins.

The transcriptome mirrors the sequences of DNA from which it was transcribed.

The level or amount of the RNA transcripted indicates a particular gene’s activity- also

known as its gene expression [63]. By analyzing the transcriptome of a cell, researchers

can thus determine whether a particular gene is turned off or on and the particulars

of the cellular environment.

Transcript profiling or transcriptomics is a technique that obtains information on the

frequencies of particular mRNA transcripts in cells [23]. The two main techniques used

in transcriptomics are microarrays, which quantify a set of predetermined sequences, and

RNA-sequencing, which uses high throughput sequences to capture all sequences [39].
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See [39] for more details about transcript profiling techniques. Our work focuses on

transcriptomic data collected through RNA-sequencing.

Increasingly researchers have used transcriptomic data for characterizing the biologi-

cal effects of small molecule drug candidates. De Wolf et al. [15] in particular successfully

showed that the transcriptomic profile, acting as a metabolic signature, can be used for de

novo drug identification. Born et al. [10] showed that through reinforcement learning,

drug generation in the disease context represented by a transcriptomic profile can produce

higher efficacy drug candidates. Transcriptomics have thus been used extensively to

screen drug candidates. Like Born et al. [10], we will propose a framework to generate

novel drug candidates based solely on a tumour’s metabolic signature (as opposed to

targeting or incorporating information about potential targets into the design process),

represented by the transcriptome of a cell.

In order to represent and generate drug candidates, we required a means of dig-

itally specifying their chemical structure. We turned to SMILES (and its variants

for this purpose).

2.2.3 Simplified Molecular Input Entry System (SMILES)

SMILES [58] is a line notation for representing molecules and reactions. For example,

"CC" represents the compound ethane.

Chemical SMILES DeepSMILES SELFIES
Ethane CC CC [C][C]
Carbon Dioxide O=C=O O=C=O [O][=C][=O]
Benzene c1ccccc1 cccccc6 [c][c][c][c][c][c][Ring1][Branch11]
Acetic Acid CC(=O)O CC=O)O [C][C][Branch13][epsilon][=O][O]

SMILES are fairly compact compared to other ways of representing a compound’s

structure. Despite their relative ease of use, generative machine learning models often

have difficulty with them. The generated SMILES strings can often be syntactically

invalid. As a result of these issues, two additional methods of representing chemicals

for the purpose of machine learning were developed.
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2.2.4 DeepSMILES

DeepSMILES [46] are an alternative line notation for representing molecules built for

machine learning. DeepSMILES specifically address two issues that SMILES strings

encounter in generative models. First, DeepSMILES syntax avoids the problem of

unbalanced parentheses by only using close parentheses. Secondly, DeepSMILES

avoids the issue of pairing ring closure symbols by only using a single symbol for

ring closures. DeepSMILES strings can be directly translated back and forth to their

corresponding SMILES strings.

2.2.5 Self-Referencing Embedded Strings (SELFIES)

SELFIES [34] are alternative string-based representations of molecular graphs that are

100% robust. Namely, each SELFIES string corresponds to a valid molecule. (We note

that while all SELFIES correspond to a valid molecule, many of these valid molecules

are not chemically viable [34]. SELFIES encode branch length as well as ring size in

corresponding Branch and Ring identifiers, allowing for 100% robust representation.

2.2.6 SPVec

Although we do not use it within our work, SPVec [70] is a Word2Vec [44] inspired

manner of representing SMILES in a continuous space. Based on a Skip-gram model

implemented with negative-sampling [70], SPVec manages to project compounds to a low

dimensional space where biophysical and biochemical properties can be easily predicted.

We leave incorporating SPVec into this project as future work.

After representing drug-like candidates using SMILES and its variants, we needed

a means of representing molecules in a continuous space in order to optimize them for

drug discovery. Variational autoencoders, a machine learning technique, are a known

algorithm of reducing the dimensionality of data to a smaller continuous space.



2. Background 13

2.3 Variational Autoencoders

Neural Networks can define a probabilistic model for nonlinear dimensionality reduction.

One of the most popular and useful examples of these deep generative models is the

variational autoencoder (VAE).

A variational autoencoder model encodes points, X , with dimensionality p into latent

variables, Z, with dimensionality k < p, with Z having a given prior p(z). This joint

probability can be written as p(X ,Z) = p(X |Z)p(Z). With this formulation, new points,

Xi, can be generated in the following way:

1. Draw a latent variable Zi ∼ p(Z).

2. Draw a datapoint Xi ∼ p(X |Z).

The goal then of the variational autoencoder is perform posterior inference over the

latent variables given observed data to recover good approximations of points simulated

as latent variables:

p(Z|X) =
p(Z|X)p(Z)

p(X)
(2.1)

Unfortunately, performing this calculation is intractable. As a result, variational autoen-

coders approximate the posterior p(Z|X) using a neural network. This work is done by

an encoder neural network. The encoder, a neural network parameterized by weights

θ takes input points datapoint, Xi, outputting their latent representation, Zi. Each latent

variable Zi has a standard Gaussian prior:

Zi ∼ N(0, Ik)

The encoder is thus denoted as qθ (Z|X). Using the θ -parameterized encoder’s vari-

ational distribution qθ (Z|X), the variational autoencoder thus approximates p(Z|X) ∝

p(X |Z)p(Z).

The decoder, another neural net, performs the second half of calculations for a VAE.

Parameterized by a different set of weights φ , the decoder takes in a latent variable, Zi,
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outputting a reconstruction, X̃i, of Xi. The decoder is thus denoted as pφ (X̃ |Z). The key

insight is that the generative decoder can be nonlinear and non-Gaussian.

X̃i|Zi ∼ pφ (·|Zi)

The decoder thus tries to maximize the marginal data log-likelihood, EX∼D[logpφ (X)],

minimizing the reconstruction error.

The VAE thus must learn to encode and decode points to and from a latent space.

However, while training the VAE, its training algorithm must ensure that the encoder

properly approximates the true posterior, p(z|x). To do so, the VAE algorithm utilizes

the Kullback-Leibler divergence KL(qθ (Z|X)||p(Z|X)), which measures the information

loss when using q to approximate p. As noted before, this is intractable, so this value

is approximated using the evidence lower bound/variational free energy (ELBO). The

ELBO in a latent variable model p(X ,Z|θ) is defined as:

Ex∼Dlog p(x)≥L1 = L2 (2.2)

with:

L1 = Ex∼D[Ez∼qθ (z|x)log p(x)]+Ex∼D[−KL(qθ (z|x)||p(z))] (2.3)

and:

L2 = Ex∼Dlog p(x)−Ex∼DKL(qθ (z|x)||p(z|x)) (2.4)

L1 consists of the reconstruction error term and a KL divergence regularization term.

The first term is the expectation of reconstruction loss (log-likelihood) over the encoder’s

distribution of latent representations Z. The Kullback-Leibler (KL) divergence regular-

ization term is between the encoder output, qθ (Z|X), and the prior, p(Z). As noted, the

prior, p(Z), is ordinarily chosen as a standard Gaussian. This term penalizes the encoder

output if the latent representation, Z, is significantly different from the standard Gaussian

distributions. This KL term causes similar inputs, X , to have similar representations, Z,

in the latent space. This effectively balanced the goals of the encoder and decoder.

The alternative L2 formulation indicates that the variational autoencoder requires a

flexible encoding distribution family to minimize the approximation divergence between

the true posterior and the best encoding distribution.

To train the VAE, a stochastic algorithm thus optimizes this ELBO.
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2.3.1 Posterior Collapse

With the L1 formulation, the VAE objective consists of two terms (1) reconstruction and

(2) KL regularization. These terms are often balanced by a weighting hyper-parameter,

β . However, during training, the KL-term often tends to vanish as the latent space

comes to match its prior.

Posterior collapse occurs when the latent space variational distribution nearly matches

its prior [40]. As a result of this phenomenon, the variational autoencoder generative

model learns to disregard a subset of the latent variables. The model essentially learns

to predict and "know" what the other latent dimensions are from one or two dimensions

of the latent representation. The latent variables thus become uninformative. Posterior

collapse reduces the capacity of the generative model, in effect making it impossible

for the decoder to utilize the content of the latent dimensions. Posterior collapse is

caused by the KL-divergence term in the ELBO objective because it actively encourages

the variational term to move towards zero, making the latent codes match the prior.

Furthermore, powerful decoders can often disregard sections of the latent space in order

to decode the variables, further encouraging the latent variables to match the prior. In

our work, this causes latent codes to match a Gaussian prior:

∃i s.t.∀x qθ (Zi|Xi)≈ N(0, Ik)

Using the true posterior p(Z|X), this can be written as:

∃i s.t.∀x p(Zi|Xi)≈ N(0, Ik)

2.3.2 Cyclical KL Annealing

Posterior collapse can prevent the VAE from learning informative latent codes. For this

reason, slowly increasing the β hyper-parameter during training is often used. This

approach is known as annealing. However, if trained for multiple epochs, the KL-

term can often still disappear.

In 2019, Fu et al. [20] proposed a cyclical annealing schedule, which repeats the

process of increasing β multiple times. "This process encourages the progressive learning
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of more meaningful latent codes, by leveraging the informative representations of previous

cycles" [20]. This approach was validated on a broad range of natural language processing

(NLP) tasks, illustrating its usefulness.

Figure 2.1: KL Regularization term in Cyclical Annealing. Figure from [40].

2.3.3 Implicit Latent Codes

The implicit deep latent variable model is another approach to posterior collapse advocated

by Fang et al.[17]. This approach seeks to create smooth latent structures to guide

generation and to discard the limitation of utilizing a Gaussian distribution for the

prior of the latent space. This approach specifically uses a sample-based representation

of variational distributions to create implicit latent features, which provide flexible

representations compared to Gaussian-based posteriors.

Implicit Representations

Instead of assuming an explicit prior over the latent distribution, qθ (Z|X), a sampling

mechanism represents a set of samples, {ZX ,i}M
i=1, through the encoder as:

Zx,i = Gφ (x,εi),εi ∼ q(ε) (2.5)

where the i-th sample is drawn from a separate neural network, Gφ ,that takes (x,ε) as

input; εi is a sample from q(ε), and q(ε) is a simple standard Gaussian. To combine

the noise with the input sequence, x, εi is appended with a hidden representation of the

sequence, x, generated by the encoder. Fig. 2.2 illustrates this.
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Figure 2.2: Diagram illustrating the network structure of the implicit latent model VAE. Figure
from [17]. Xi are time-series inputs at time i, hi are hidden states computed by the model for
time step i. For details on multi-layer perceptrons (MLP), Long short-term memory (LSTM) see
Section 2.4.

Dual form of KL-Divergence for Implicit Representations

The implicit representations defined by Equation 2.5 cause issues during training as the

KL term is no longer tractable. However, by optimizing the KL divergence dual form

based on the Fenchel duality theorem [54], this issue can be circumvented:

KL(qθ (z|x)||p(z)) = maxνEZ∼qtheta(Z|X)νψ(X ,Z)−EZ∼p(Z)exp(νψ(X ,Z)) (2.6)

where νψ(X ,Z) is an auxiliary dual function parameterized by a neural network with

weights ψ .

After replacing the KL term with the dual form, the implicit variational autoencoder

has the following objective:

EX∼D[Esimqθ (Z|X)logp(X)]−EX∼D[EZ∼qθ (Z|X)νψ(X ,Z)]+EX∼D[EZ∼qθ (Z|X)νψ(X ,Z)]

(2.7)

As noted in Section 2.3.1, the main issue with VAEs is posterior collapse. To better

regularize the space, Fang et al. further proposed replacing the KL-divergence term,

EX∼D−KL(qθ (Z|X)||p(Z))] with:

−KL(qθ (Z)||p(Z)) (2.8)

where qθ (Z) =
∫

q(X)qθ (Z|X) is the aggregated posterior and q(X) is the empirical data

distribution of the training dataset. The integral can be estimated by first sampling x and

then sampling Zi ∼ qθ (Zi|Xi). By using Equation 2.8, the variational autoencoder works

to represent each point, Xi, as a local point in the latent space such that the aggregated

latent points, Z, match the prior.
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This approach coincides with Zhao et al.’s [71] approach where mutual information

is introduced into the optimization process. We do not present the proof of their result

here, showing only the useful (relative to our work) aspects of their work. Based on

their decomposition result we see:

KL(qθ (z)||p(z)) = I(x,z)−EX KL(qθ (z|x)||p(z)) (2.9)

where I(x,z) is the mutual information between Z and X under the joint distribution

qθ (X ,Z) = q(X)qθ (Z|X). The objective in Equation 2.7 thus also maximizes the mutual

information between data points Xi and their latent features Zi.

2.4 Additional Machine Learning Algorithms

We use a host of other machine learning methods within this work to predict toxic-

ity, to better control the latent space, and to optimize the properties of newly found

chemical compounds.

2.4.1 Machine Learning for Manipulating the VAE Latent Space

We first present several machine learning algorithms that we used to map discrete

representations of chemical compounds back and forth from a continuous latent space.

Neural Networks: Multi-layer Perceptrons

Multi-layer perceptrons (MLP) are a class of feed-forward neural networks composed

of variously connected layers of artificial neurons that are activated upon reaching a

threshold. Each hidden layer within an MLP is composed of multiple nodes that consist

of a linear function composed with a nonlinear activation function [66].

f (x) = σ(W · x+b)

where σ(x) is a nonlinear activation function (.i.e. ReLU(x)= max(0,x) or tanh(x)), W is

a matrix of weights, and b is an added bias. The final layer of MLPs used for classification

often output a set of probabilities for each class by using a Softmax layer:

Softmax(xi) =
exp(xi)

∑ j exp(x j)
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Figure 2.3: Sigmoid, Tanh, and ReLU. Figure from [59]

Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of neural network particularly adept

at extracting ’strong signals’ from data [8]. CNNs utilize layers with convolving filters

that are applied to local features and thus extract more complicated features from these

local features. Convolutional layers accomplish this by making use of an input translation

invariance (.i.e. features appearing in multiple places). This allows locally connected

features to convolve over the entire feature map.

Pooling layers are often used after convolving layers within CNNs. Pooling layers

combine adjacent outputs from feature maps and output the maximum. In this way,

pooling layers down-sample convolutional layers in order to extract the strongest signals.

Finally, fully-connected layers at the end of networks are dense layers that have every

output neuron of the penultimate layer as input to each neuron in the last layer.

Long-Short Term Memory (LSTM) Recurrent Neural Networks

LSTMs are a recurrent neural network (RNN) that make use of feedback connections [42].

Each sequential element an LSTM consists of a cell. Each of these cells can erase, write,

and read information. LSTMs can thus learn the context of a given character or word

in a sequential/time-based input by learning long-term information.
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Figure 2.4: LSTM Cell. Figure from [42].

ft = σ(Wf · [ht−1,xt ]+b f )

it = σ(Wi · [ht−1,xt ]+bi)

C̃t = tanh(Wc · [ht−1,xt +bC)

ot = σ(Wo · [ht−1,xt +bo)

ht = ot ∗ tanh(Ct)

where the σs represents sigmoid operations, W s are matrix of weights, bs are added

biases, ht is the hidden state computed at each time step t., Ct is the cell state computed

at each time-step t., and xi is the series input at time-step t [42].

We used LSTMs in order to learn features of the chemical compounds in our model

from their discrete representations.

Transformer

Powerful decoders are rarely used in variational autoencoders in order to prevent posterior

collapse (see Section 2.3.1). For this reason, after training various VAES and obtaining

information-dense embeddings, we trained a more powerful transformer to more flexibly

decode the pre-trained latent space autoregressively as in [30]. We give a brief overview

of transformers here.

Proposed by Vaswani et al. [64], the transformer is a sequence-to-sequence machine

learning architecture that does not rely on RNNs. Transformers most importantly make

use of self-attention.

Self-Attention: Language often relies heavily on context. Self-attention attempts to

understand the relevant associated words/characters when processing a given word/character.



2. Background 21

For example, in the sentence "Statistics is one of the most important subjects in the world!",

a transformer would attempt to utilize the word "Statistics" when trying to understand the

context of "subjects". Self-attention specifically works by processing each word vector

in a given segment by making use of three novel components:

1. Query: The query is a representation of the current word/character that is scored

against all other words/characters.

2. Key: Key vectors are labels for all the words/characters being considered.

3. Value: Value vectors are character/word representations. Values are sums of each

word/character’s relevancy score.

An attention function maps queries and key-value pairs to an output. A scaled dot-

product then calculates the correlation between the query Q and the key K, multiplying

by V [64], giving:

Attention(Q,K,V ) = Softmax(
Q∗KT
√

dk
)V (2.10)

where dk is the dimension of the key space.

Figure 2.5: Multi-headed Attention.
Figure from [64].

Transformers also use multi-head attention.

Multi-headed attention allows the model to attend

to information at h positions of the sentence simul-

taneously.

Multi(Q,K,V ) = Concat(head1, ....headh)W o

whereheadi = Attention(QW Q
i ,KW K

i ,VW K
i )

and the matrices W o, W Q
i , W K

i , and W K
i correspond

to linear projections.

Transformers normally consist of an encoder-

decoder structure. We only make use of the decoder

aspect in our transformer. For this reason, we do

not discuss the encoder architecture. See [64] for more details. Like in Radford et al.’s

GPT-2 Transformer [50], we jettison the encoder-decoder attention layers in our decoder.

The remaining architecture consists of several decoding layers, each consisting of a

multi-headed attention layer, and a feed forward layer.
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Figure 2.6: Decoder-Layer and resulting full Decoder. Figure from [1].

2.4.2 Machine Learning Algorithms for Predicting Chemical Toxic-
ity

We now present background for several machine learning methods we utilized to estimate

the toxicity of various proposed chemical compounds.

Random-Forests

Random forests are an ensemble of decision trees [11]. Specifically, each tree predictor

performs a series of decisions that are used to conduct finer and finer grained analysis

(.e.g. "Is this object a fruit?”, “Is this fruit round?", "Is this bigger than an orange"?).

Each tree is initialized from an independently sampled randomized vector [11]. Random

trees, importantly, make use of bootstrap samples of the training dataset, further allowing

individual trees to learn different information. When performing splits on individual trees,

random forests utilize a greedy algorithm to decide which feature to split.

Random forests themselves consist of many individual decision trees that collectively

make a decision. Random forests can be used for both regression and classification. For

classification for example, each decision tree could report a class prediction with the

winning class having the plurality of votes. For regression, the output could be a weighted

average of the decision trees. Each of these trees, both in regression and classification,

are initialized differently and thus act independently.
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Extremely Randomized Trees/Extra-Trees

Extremely Randomized Trees or Extra-trees are a similar ensemble algorithm to random

trees. Extra-trees however train on the entire training set (no bootstrapping) when

constructing individual trees. In addition, unlike random trees, extra-trees do not perform

tree-splits on randomized features at each level [22].

Dropouts Meet Multiple Additive Regression Trees (DART)

DART is a gradient boosting tree ensemble algorithm [51]. This algorithm uses dropout [60]

on boosted regression trees to make accurate yet generalizable tree models.

DART, at each training iteration, computes the derivative of the loss function and

adds a tree that fits the inverse of this derivative to the ensemble. DART also during

training performs dropout of previously trained trees in its ensemble when fitting new

trees. In this way DART attempts to prevent overfitting [51].

Support Vector Machines

Support vector machines (SVM) are a machine learning algorithm used for classifica-

tion [61]. SVMs map input points to a hyperspace in order to separate input classes as

far as possible. SVMs then find the hyperplane that maximizes the margin, (twice the

smallest distance from each class to the separating hyperplane).

Figure 2.7: SVM with dividing hyperplane H and margin M for a two-dimensional dataset
(x1,x2). Figure from [33]. The left shows a completely separable dataset while the right shows an
inseparable set.
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SVMs are an inordinately useful machine learning algorithm and are able to provide

the probability of classification of each point by using the distance of the point to

the separating hyperplane [61].

2.4.3 Optimization Algorithms

In order to optimize compounds within the latent spaces for certain desirable properties,

various approaches have been proposed including unconstrained and constrained Bayesian

optimization [24, 27]. We now present the algorithms that we used to optimize several

different desirable properties of proposed anticancer chemicals compounds.

Genetic Algorithms

We propose utilizing a genetic algorithm for discovering new compounds with desirable

properties. Genetic algorithms are an evolutionary computational approach. In this

approach, a randomly generated population of individuals is used to generate a new

population through variation operations. Variations often include operations like mutation

and crossover. By then selecting the best individuals according to a fitness function,

the genetic algorithm optimizes said fitness function. In our case, we plan to apply this

approach by using the latent space’s dimensions as "genes" that define each "individual"

chemical compound.

Algorithm 1 Genetic Algorithm [18]
1: procedure GENETICALGORITHM(GENERATIONS, POPSIZE, PROBLEMARGS)
2: population = RandomPopulation(popsize)
3: for i=0 to generations do
4: population = VariationOperations(popsize, problemargs)
5: population = problemargs.FitnessFunc(population)
6: population = problemargs.sort(objective)
7: population = BEST(population, popsize)
8: end for
9: return BEST(population)

10: end procedure

Arithmetic Crossover: Arithmetic crossover occurs when two individuals from the

populations are combined using some arithmetic operation. In our work, arithmetic
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crossover takes two points in the latent space and combines them using a weighted

sum [47].

2.4.4 Bayesian Optimization

Bayesian optimization (BO) is a formalized way to estimate the global optimum of an

objective function, f (·), over a bounded domain [19]. Given that evaluations of f (·) are

considered expensive, the aim of BO is to keep the number of evaluations small. By

making use of non-parametric probabilistic auxiliary models to act as an approximation

of the function, f (·) , BO can efficiently determine using a different acquisition function

the next candidate to evaluate with the function, f (·) :

f (x) : f (x∗) = maxx f (x) (2.11)

where x∗ is the optimum point and x are the evaluated points.

The auxiliary function is often modelled using a Gaussian process (GP): f (x) ∼
GP(m(x),k(xi,x j)), as this function is fairly flexible. k(·, ·) encodes the similarity between

the two points based on a user-selected metric, and the function m(·) give the mean values.

The acquisition function is a function utilized to balance between exploring other areas

of the domain and exploiting the current explored areas of the domain. Commonly used

acquisition functions include probability of improvement and expected improvement [19].



3
Experimental Setup

3.1 Introduction

We describe the tools and datasets that we used in this chapter. We make use of two

datasets to train and evaluate our VAE models: ChEMBL [6] and ZINC [29]. We

utilize the GDSC [28] for predicting IC50 data. Lastly to train our models we utilize

Python and Google Colab.

3.2 Datasets

The three datasets ChEMBL, ZINC, and GDSC are staples of previous works in chemical

compound generation [24, 41, 43, 25, 10]. We utilized these datasets to allow direct

comparisons with prior work.

3.2.1 ChEMBL

To model bioactive small molecules for our variational autoencoder, we utilized ChEMBL [6].

ChEMBL is a database with over 1.9 million bioactive molecules with drug-like properties

and their associated bioactivities [6]. We constrain our dataset to only contain molecules

with fewer than 50 heavy atoms (i.e. non-hydrogen) and only composed of H, B,

C, N, O, F, Si, P, S, Cl, Br, and I. Our resulting ChEMBL dataset had 1.6 million

bioactive compounds.

26
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3.2.2 ZINC

ZINC is another database with bioactive molecules [29]. We used a subset of 250,000

drug-like commercially available compounds from this dataset as in Gómez-Bombarelli

et al. [24]. We further constrained this dataset in the same way as ChEMBL. We used

ZINC to estimate how effectively our model could represent and decode molecules from

outside its training dataset distribution.

3.2.3 IC50 Sensitivity: GDSC

We utilized drug sensitivity data from the public database Genomics of Drug Sensitivity

in Cancer (GDSC) [28]. "GDSC contains the screening results of over 1000 genetically

profiled human pan-cancer cell lines with a wide range of anticancer compounds" [41].

The transcriptomic profiles are all those of cancer cells untreated. Drug sensitivity values

in this dataset are represented by IC50 values on the log-scale. We focus on 202 of the

265 drugs in the dataset that met our criteria of only containing the atoms H, B, C, N,

O, F, Si, P, S, Cl, Br, and I. Similarly, we focus on the transcriptomic profiles of the

available 985 cell lines. Because the GDSC database lacks certain values, and because

of our own criteria, pairing of the 985 cell lines with the anticancer compounds resulted

in approximately 151,444 pairs. In training using this dataset, we used randomized

SMILES augmentation [2] (different representations of the same SMILES), resulting

in more than 4.9 million data points. We used 20% of the cell line pairs for testing

and the rest for training.

17,737 genes initially represented each of the 985 cell lines. Manica et al. [41]

showed this transcriptome could be reduced to a subset of 2128 genes by utilizing

network propagation over the STRING protein-protein interaction network [62]. By using

STRING, Manica et al.’s approach incorporated intracellular interactions by adopting

a network propagation scheme for each drug. In the propagation scheme, weights

associated with the reported targets were diffused over the STRING network, giving

back an importance distribution over the genes. We utilize the 2128 most important

genes following Manica et al. [41].
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3.2.4 Toxicity: DrugBank, KEGG, TOXNET, T3DB

For toxicity prediction, we consider approved drugs as having an appropriate benefit risk

ratio and hence to be non-toxic. Though they may still pose a risk, we consider them as

non-toxic due to their corresponding clinically approved status and therapeutic properties.

For non-toxic compounds we utilized two datasets: the FDA-approved and the

Kyoto Encyclopaedia of Genes and Genomes (KEGG) Drug [31] datasets. The FDA

drugs were obtained from the DrugBank database [69]. Removing redundant chemicals

gave 1515 FDA-approved and 3682 KEGG-Drug chemical compounds[49]. For our

purposes we used the KEGG-Drug compounds to train our model and the FDA-approved

compounds to test.

For toxic compounds, we also utilized two datasets: TOXNET [68] and the Toxin

Target Database (T3DB) [35]. TOXNET, maintained by the National Library of Medicine,

provides toxicological datasets; specifically, we used of the Hazardous Substances Data

Bank. T3DB consists of the chemical properties, molecular and cellular interactions, and

medical information of several drugs and toxins. Removing redundant chemicals gave

3035 TOXNET and 1283 T3DB unique toxic compounds. For our purposes we used the

TOXNET compounds to train our model and the T3DB compounds to test.

3.3 Machine Learning Setup

We utilized TensorFlow r2.3 and Keras 2.3. We made use of Google Colab GPUs for

training our models. We lastly used the Python library SciPy for performing statistical

analysis. We used the most up to date version of DeepSMILES while using SELFIES

v0.2.4 (the version of SELFIES was updated midway through working on this project).

We used RDKit v2020.03.01 [53] to evaluate and depict molecules. RDKit is a collec-

tion of cheminformatics and machine-learning software written in C++ and Python [53].

We used GuacaMol to evaluate molecules as well. GuacaMol is an open source Python

package for benchmarking model that perform de novo molecular design [12].



4
Experiments

4.1 Introduction

In this work, we use variational autoencoders (VAE) to create highly meaningful represen-

tations of chemical compounds. From these representations we predict several desirable

properties including drug-likeness (QED), solubility (logP), and synthesizability (SAS).

In addition to predicting these important drug qualities, we shape the latent space of

our variational autoencoders to be responsive to the transcriptomic profile of given cell

lines (such that compounds with low efficacy are clustered together in one area of the

latent space, while those with high efficacy are in another). Using these shaped and

highly information-dense latent representations, we then predict compounds’ toxicity

and log10IC50 efficacy on individual cell lines. We use transcriptomic profiles in order to

represent the cell lines. The transcriptomic profiles we use are of cells untreated with

given anti-cancer compounds from the GDSC dataset [28]. Finally, we seek to optimize

compounds’ efficacy against individual cancer cell lines and against particular types of

cancer using Bayesian optimization (BO) and genetic algorithms (GA).

To do this, we complete five main parts: (1) the design and optimization of VAEs to

capture chemical information about chemical compounds represented as SMILES [58],

DeepSMILES [46], or SELFIES [34]; (2) the design of a powerful decoder to map latent

variables to the space of SMILES, DeepSMILES or SELFIES; (3) the prediction of a

29
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compound’s efficacy in a disease context represented through the transcriptomic profile

of cancer cells; (4) the prediction of a particular compound’s toxicity from its latent

representation; and finally, (5) optimization using BO and GA in a continuous latent

space to discover new potential compounds with higher efficacy in particular disease

contexts represented by transcriptomic profiles.

4.2 Modelling Compounds: Variational Autoencoders and
Transformers

Due to the regular presence of repetitive, translation-invariant substrings (corresponding

to chemical substructures like cycles and functional groups) that occur in compound

representations ( such as SMILES, etc.), we utilized a convolutional neural network to

encode chemicals in our VAE. We mapped our SMILES/DeepSMILES/SELFIES strings

to a latent space of 64 dimensions. For our VAE decoder we utilized an LSTM.

Figure 4.1: Variational autoencoder and training process. x is the discrete input vector, µ are
the mean values calculated for the latent dimensions, σ are the standard deviations for the latent
dimensions and z is the sampled latent representation. Encoder and Decoder are neural networks.
Shows an example for the cancer drug Doxorubicin.

We trained the VAE to minimize the error in re-mapping the latent space to the

original SMILES strings as seen in Fig. 4.1. The information bottleneck of the latent

space fixed-length continuous vectors forced the VAE to learn compressed representations

that captured the most salient information about the SMILES/DeepSMILES/SELFIES.

For later optimization in the latent space to succeed, most points must decode into

valid SMILES chemical representations. Latent spaces often are sparse, and as a result
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Hyperparameters
Convolutional Neural Network LSTM Decoder

Dropout: 0.2 Dropout: 0.2
Convolution Activation: Tanh LSTM Activation: Tanh

Embedding Size : 192 LSTM Hidden Size: 256
Filter Depth Growth Rate: 1.16 Dense Layer Size: 256

Table 4.1: Hyperparameters in CNN Encoder and LSTM Decoder. For full details of the
implementation see our github: https://github.com/hanshanley/GENerationZ.

powerful decoders often create less meaningful latent codes; thus, the latent space often

contains large "dead areas" which decode into gibberish or invalid SMILES. While VAEs

encourage the development of meaningful features (see Section 2.3), posterior collapse

can preclude their creation. For this reason, we adopted four different approaches to

ensure that we achieved a high rate of SMILES decoding.

We firstly made use of SELFIES and DEEPSmiles. SELFIES in particular are made

up of individual tokens that can be combined in seemingly arbitrary fashions to obtain

syntactically valid chemical compounds. This does not mean that these compounds are

chemically reasonable or readily synthesizable, however. Despite this, by exploring the

use of DeepSMILES and SELFIES and we hoped to eliminate syntax as an issue.

We secondly used cyclical annealing. Cyclical annealing [20] has been reported to en-

able the progressive learning of more meaningful latent codes over the epochs of training.

We thirdly used the implicit representation and training of latent codes proposed by

Fang et al. [17]. This approach utilizes sampling to ensure that the aggregated latent

points match the used prior (as discussed in Section 2.3).

We lastly used a powerful transformer decoder to decode the pre-trained latent codes.

This decoder works as follows: after training our VAE to discover the latent codes, all the

SMILES in our datasets are mapped to their latent representations. We then trained this

transformer decoder to map these latent representations back to their SMILES strings.

The decoder uses the architecture designed by Radford et al. [50] without positional

embeddings, with six decoding layers, and an embedding size of 192. In addition to

these transformer layers, as in Liu et al. [37], we appended an LSTM to the transformer

output before decoding to original discrete SMILES representations. The transformer



4. Experiments 32

approach essentially utilizes the VAE to learn feature representations of compounds, and

then the transformer takes responsibility for mapping compounds back to their original

representation. Instead of a VAE approach, this is essentially a feature learning approach.

Separately, we also attempt to shape the latent space of our models to create a gradient

along IC50 values. We utilize Gómez-Bombarelli et al.’s [24] approach by jointly training

our VAEs with a multi-layer perceptron neural network to predict IC50 values from the

transcriptomic profiles of different untreated cells and the latent representations of the

anticancer compounds. By training for this type of property prediction (.i.e. efficacy

against a given untreated cell line’s transcriptomic profile) the distribution of molecules

in the latent space can then be organized by this property.

We now present some initial results for modelling compounds: First, we checked if

our models’ latent representations could be effectively and correctly mapped back into

discrete chemical representations. We display decoding rates for all our trained models.

Baseline models were trained with cyclical annealing and for 40 epochs. Implicit models

were trained with linear annealing for 40 epochs as well. We trained all models using the

ChEMBL dataset with 16,000 compounds held out for testing. In addition, in order to

ascertain whether our VAE managed to effectively generate meaningful latent vectors,

we checked if their latent representation were sufficiently information-dense.

4.2.1 Decoding Rates

We make a distinction between syntactically correct SMILES, DeepSMILES, and SELF-

IES strings and chemically reasonable SMILES, DeepSMILES, and SELFIES strings.

Even though a SMILES, DeepSMILES, and SELFIES string could be syntactically correct,

it may not be chemically reasonable (.i.e. it cannot be kekulized, sanitized, or converted

to a valid molecule by RDKit). As such, the "chemically reasonable decoding rate"

properly gives how well models decode latent representations back to correct SMILES,

DeepSMILES, or SELFIES strings. In addition to the ability of our model to decode latent

representations from the ChEMBL test set, we also utilize random chemicals selected

from the ZINC dataset as a further validation set.
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Model ChEMBL:
Syntactic
Decoding
Rate

ChEMBL:
Reasonable
Decoding
Rate

ZINC:
Syntactic
Decoding
Rate

ZINC:
Reasonable
Decoding
Rate

Cyc VAE SMILES 0.849 0.814 0.692 0.634
Cyc VAE SMILES
Transformer

0.944 0.937 0.804 0.749

Cyc VAE
DeepSMILES

0.958 0.775 0.893 0.705

Cyc VAE
DeepSMILES
Transformer

0.985 0.932 0.925 0.842

Cyc VAE SELF-
IES

1.0 0.819 1.0 0.827

Cyc VAE SELF-
IES Transformer

1.0 0.942 1.0 0.941

Imp VAE-SMILES 0.753 0.699 0.681 0.634
Imp VAE SMILES
Transformer

0.831 0.814 0.737 0.707

Imp VAE
DeepSMILES

0.976 0.801 0.829 0.684

Imp VAE
DeepSMILES
Transformer

0.950 0.828 0.913 0.819

Imp VAE SELF-
IES

1.0 0.851 1.0 0.822

Imp VAE SELF-
IES Transformer

1.0 0.939 1.0 0.927

Table 4.2: Decoding rate for 1000 random points in ChEMBL test set and the ZINC dataset. We
make a distinction between syntactically correct SMILES and chemically reasonable SMILES.
RDKit was used to check the chemical syntactic and chemically reasonableness scores. "Cyc"
models denotes VAE models that were trained with cyclical annealing. "Imp" denotes models
trained with implicit latent encodings. "Transformer" denotes decodings done with the transformer
decoder.
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As seen in Table 4.2, the decoding rates for all the models on the ChEMBL datasets are

higher than on the ZINC dataset. However, by utilizing DeepSMILES and SELFIES

and/or using the Transformer decoding, we see that the rate of decoding increases from

the baseline VAE-SMILES model. SELFIES which offer perfect syntactic decoding

further give us the best results on both the ChEMBL and ZINC datasets. All these models

illustrate that our VAE model is able to effectively map unseen latent representations

of chemicals from the latent space back to their corresponding discrete representations.

These results also illustrate the effectiveness of the additional transformer decoder in

aiding decoding from the latent space. We lastly see that we attain better results by

utilizing cyclical annealing rather than implicit latent codes. Overall, the best method to

generate reasonable molecules used the SELFIES representation and cyclical annealing.

4.2.2 Tanimoto Similarities

We utilize RDKit to calculate fingerprints and similarity scores. Specifically, the default

RDKit Daylight fingerprint identifies all the chemical subgraphs within each molecule

(where each node is an atom and each edge is a bond), hashing them to generate a

"raw bit ID" [53]. The default scheme for hashing subgraphs is to hash the individual

bonds based on the following:

1. the types of the two atoms in the bond;

2. the degrees of the two atoms in the path;

3. the bond type (or including aromatic bonds).

The default daylight fingerprint size is 2048 bits with a minimum path size of 1 bond

and maximum path size of 7 bonds.

We first mapped 4000 random ChEMBL SMILES from our test set (.i.e. not trained

upon) to the latent space of our cyclically annealed SMILES VAE. We then reduced the

dimensionality using linear PCA. As seen in Fig. 4.2, as the compounds get closer to the

compound "COc3ccc(NC(=O)[C@H](C)NC (=O)C2CCN(S(=O)(=O)c1ccc(C)cc1)CC2)cc3",

their Tanimoto similarity values increase. This indicates that the latent space corresponds
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Figure 4.2: Hexbin plots and distribution histograms of the Tanimoto similarities of 4000 random
chemical compounds from the ChEMBL SMILES test set against a single compound after
projecting their latent representations using linear PCA. Identical pairs of molecules have a
Tanimoto similarity of 1 and are coloured yellow, while less similar molecules are green, and
completely dissimilar molecules are dark blue.

to the chemical composition of the test compounds, evidencing that the latent space

is meaningful. We achieved similar results for the other models, see Appendix A

(Figs A.1-A.5) for these graphs.

4.2.3 Compounds Near Ibuprofen in Latent Space

Figure 4.3: Chemical compounds in the vicinity of the Ibuprofen with their Euclidean distance
(ED) in the latent space and Tanimoto Similarity (TS).
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We secondly took the drug Ibuprofen and embedded it within the cyclically annealed

SMILES VAE latent space. We now see from the SMILES 2-D representations in Fig 4.3

that as we move farther away from Ibuprofen’s latent space representation, the corre-

sponding SMILES move further away in similarity further validating the usefulness of the

latent space representations. We achieved similar results with the other trained models.

4.2.4 QED, logP, and SA Scores in the Latent Space

(a) SMILES QED (b) SMILES logP (c) SMILES SA Score

(d) DeepSMILES QED (e) DeepSMILES logP (f) DeepSMILES SA Score

(g) SELFIES QED (h) SELFIES logP (i) SELFIES SA Score

Figure 4.4: Hexbin plots of mean QED, logP, and SA scores of 4000 random chemicals
compounds from the ChEMBL test set after projecting using linear PCA the latent representations
of the cyclically annealed VAEs.

In order to further understand the information-density of the latent space of our models,

we plotted the drug-likeness (QED) scores of the same compounds using linear PCA on the

latent space representations. We first show the results for the cyclically annealed models.
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As seen in Fig. 4.4, there is a clear gradient for the QED, and SA Scores, while the

logP values have a less identifiable gradient. The latent space automatically captured

important qualities about the chemical compounds. This indicates that latent space

is indeed meaningful. We see this behaviour across the SMILES, DeepSMILES, and

SELFIES latent representations.

(a) SMILES QED (b) SMILES logP (c) SMILES SA Score

(d) DeepSMILES QED (e) DeepSMILES logP (f) DeepSMILES SA Score

(g) SELFIES QED (h) SELFIES logP (i) SELFIES SA Score

Figure 4.5: Hexbin plots of mean QED, logP, and SA scores of 4000 random chemicals
compounds from the ChEMBL test set after projecting using linear PCA the latent representations
from implicit VAE models.

We now present the results for implicit code VAE models. As seen in Fig. 4.5, the

models were unable to capture the same information that the cyclically annealed models

did. For this reason, we did not further investigate their use in the rest of this work. We

leave trying to optimize these models so that they can automatically learn the key features
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of the chemical compounds to future work. In order to further investigate the information-

(a) SMILES QED (b) SMILES logP (c) SMILES SA Score

(d) DeepSMILES QED (e) DeepSMILES logP (f) DeepSMILES SA Score

(g) SELFIES QED (h) SELFIES logP (i) SELFIES SA Score

Figure 4.6: Hexpolot of mean QED, logP, and SA scores of 4000 random chemicals compounds
from the ZINC SMILES testing test after projecting latent representations using linear PCA.

density of the cyclically annealed latent space, we tested this approach on the ZINC

database in order to ensure that our approach worked for compounds outside of ChEMBL.

Taking another 4000 random compounds from the ZINC dataset, we again see similar

trends in property gradients in Fig. 4.6 for QED and SA scores for SMILES, DeepSMILES,

and for SELFIES. This indicates we can elicit information-dense latent representation

from all three types of input molecular representations.
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4.3 Predicting log10 IC50: Attention Based Neural Net-
works

Although predicting and optimizing QED, logP, and SA Scores are important in their own

right, we focused on optimizing IC50 efficacy values for compounds against a particular

cancer cell target profile. We thus developed an attention-based neural network to predict

log10IC50 values from the latent space projection of compounds and the transcriptomes

of cancer cell targets. We aim to predict log10IC50 values from solely their latent

representations and without their corresponding complete SMILES. This allows for

later optimization in the latent space according to the IC50 values. We note again that we

used a subset of the transcriptome, namely 2128 genes, following the approach of Manica

et al. [41]. See Manica et al. [41] for details on the approach of selecting 2128 genes. We

utilized IC50 and SMILES drug data from the GDSC dataset for these predictions. We

used 20% of the cell line pairs for testing and the rest for training and validation.
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Gene Attention and Contextual-Attention

We build our model based on the approach utilized by Manica et al [41]. Specifically,

our modified Manica et al. [41] model utilized their definitions of gene attention and

contextual-attention. Contextual attention allows embedding SMILES and gene expres-

sions to interact yielding information about how individual fragments interact with genes.

Figure 4.8: Calculation of gene em-
beddings. Figure from [41]. Gene
subset is concatenated with itself after
one version is with put through linear
layer and a Softmax layer to compute
an attention distribution (αi).

We calculated gene attention using a self-attention

encoder on the 2128 gene subset. This gene at-

tention is calculated in the same manner as self-

attention [41]. In contrast, the contextual attention

layer takes in the SMILES embedding of a com-

pound and genes from a cell to compute an attention

distribution over the SMILES embedding within

the context of the genes [41]. In our context, we do

not utilize the SMILES tokens. Thus, to calculate

contextual attention, we project our latent space

back to an appropriately sized vector by repeating

it, passing it through an LSTM and then through a dense layer (as in a standard decoder)

and then perform contextual attention. Contextual attention is calculated as:

ui =V T tanh(Wesi +WgG)whereWg ∈ RA×|G|.

αi =
exp(ui)

ΣT
j exp(u j)

(4.1)

The matrices Wg (project genes) and We (project chemical embeddings) project

both the genes, G, and SMILES/DeepSMILES/SELFIES embedding, si, to a com-

mon attention space, A. The α vector then supplies the attention vector over

the partially decoded SMILES, given the gene context, G. Once the gene encod-

ings and the contextual embeddings are computed, we utilize several dense layers

before outputting the predicted log10IC50 value. For full details see our github

https://github.com/hanshanley/GENerationZ.
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Figure 4.9: Calculation of contextual
embeddings [41]. Gene attention out-
put and encoded smiles are put through
A contextual attention (CA) layer. The
CA layer then outputs an attention
distribution(αi) over the SMILES en-
coding, in the context of transcriptomic
profile.

We note here that most importantly, unlike

Manica et al. [41], by making use of our VAE

embeddings instead of SMILES strings, we are

able to borrow predictive and information power

from the ChEMBL dataset. We have shown that

our embeddings are fairly information-dense. By

utilizing them, we now show that we can achieve

high performance predicting log10IC50 values from

transcriptomics data of cancer cells and SMILES.

We further show that we can achieve good results

without resorting to using ensembles as in Manica et

al. [41]. We now show the log10IC50 prediction uti-

lizing the embeddings of each cyclically annealed

VAE model:

Figure 4.10: Prediction of log10IC50 using transcriptomic data and SMILES latent embeddings.
The model was fitted in log space. RMSE was calculated after normalizing log10IC50 on a [0,1]
scale.
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Figure 4.11: Prediction of log10IC50 using transcriptomic data and DeepSMILES latent embed-
dings. The model was fitted in log space. RMSE was calculated after normalizing log10IC50 on a
[0,1] scale.

Figure 4.12: Prediction of log10IC50 using transcriptomic data and SELFIES latent embeddings.
The model was fitted in log space. RMSE was calculated after normalizing log10IC50 on a [0,1]
scale.
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As seen in the graphs of predicted log10IC50, we achieved fairly high Pearson

coefficients utilizing our models, with the "best" model utilizing the original SMILES

embeddings. Testing which one was better using one-sided Mann-Witney tests on the

prediction error between the SMILES and DeepSMILES model, we found that SMILES

was "significantly" better (p-value = 0.003).



4. Experiments 44

4.4 Optimizing the Latent Space for Predicting log10IC50

In order to better predict log10IC50 values using our convolutional encoder, we shaped

the latent space of our VAE to contain gradients for the log10IC50 value of compounds

conditioned on individual cell’s transcriptomic profiles. To do so, we trained a multi-layer

(a) Normalized [0,1] log10IC50 for compounds
in the non-shaped SMILES-VAE latent space.

(b) Normalized [0,1] log10 IC50 for IC50 shaped
SMILES-VAE latent space.

Figure 4.13: Normalized [0,1] log10 IC50 values for chemical compounds after projecting using
linear PCA against the UMC-11 cell line, a cell of a carcinoid-endocrine tumour affecting the
lung.

perception (MLP) jointly with our VAEs to predict log10IC50 values. This MLP took

as input the latent space representation of known cancer drugs and the transcriptomic

profile of different cell lines and predicted the log10IC50 value. Gomez-Bombarelli et al.

[24] used this same mythology in their approach to shape the latent space according to

QED, SAS, and logP values. (We also note that this approach will later also assist with

optimizing the latent space for the IC50 value). We performed this optimization on all

models but show the latent space only for SMILES models for simplicity.

Fig. 4.13 illustrates clearly that we can shape the latent space to be responsive to

particular cell lines. We can organize the latent space such that efficacious compounds

are in one area and ineffective compounds are in another.

Using the upgraded model with latent shaping on IC50, we sought to determine

whether we could better predict the normalized log10 IC50 of the GDSC dataset compared

to using latent embeddings from non-shaped VAE models. We stratify our train and



4. Experiments 45

test sets so that only compounds used to shape the latent space are used in only the

training set of the prediction models.

Figure 4.14: Prediction of log10 IC50 using transcriptomic data and SMILES latent embeddings
with IC50 latent shaping. The model was fitted in log space. RMSE was calculated after
normalizing log10IC50 on a [0,1] scale.

We assess whether models using the IC50 shaped latent embeddings are better at

predicting IC50 than non-shaped latent embeddings. Again, we use a one-sided Mann-

Witney U-test. On comparting the SMILES embeddings, we saw W = 2.77× 1010,

p-value < 2.2e-16, for the DeepSMILES we saw W = 2.74× 1010, p-value < 2.2e-16,

and for the SELFIES we saw W = 6.31× 1010, p-value < 2.2e-16. These tests further

illustrate the usefulness of this approach in getting better error rates in predicting IC50

from compounds’ discrete representations and transcriptomic profiles.
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Figure 4.15: Prediction of log10 IC50 using transcriptomic data and DeepSMILES latent
embeddings with IC50 latent shaping. The model was fitted in log space. RMSE was calculated
after normalizing log10IC50 on a [0,1] scale.

Figure 4.16: Prediction of log10IC50 using transcriptomic data and SELFIES latent embeddings
with IC50 latent shaping. The model was fitted in log space. RMSE was calculated after
normalizing log10IC50 on a [0,1] scale.
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Model Accuracy TPR FPR F1 MCC
VAE-SMILES 0.662 0.574 0.264 0.609 0.315
VAE-SMILES
IC50G

0.668 0.595 0.270 0.622 0.328

VAE-
DeepSMILES

0.673 0.574 0.245 0.613 0.334

VAE-
DeepSMILES
IC50G

0.669 0.541 0.224 0.596 0.327

VAE-SELFIES 0.645 0.604 0.321 0.609 0.283
VAE-SELFIES
IC50G

0.613 0.811 0.553 0.657 0.273

Table 4.3: Key performance metrics for the classification of chemical compounds as toxic or
non-toxic. All latent embeddings were trained using cyclical annealing. The best value in each
column is in bold. The IC50G suffix indicates that the latent space was shaped to better predict
IC50 values.

4.5 Predicting Toxicity with Ensembles: Random Forests,
Extra Trees, DARTs, Neural Nets, and SVMs

Lastly, we needed a means of predicting the toxicity of a compound from its latent space

representation. In addition to optimizing a compound’s IC50 value against particular

transcriptomic profiles, we also wished to ensure that our proposed drug candidates were

not highly toxic. We note the key idea is not determining exactly whether a compound

is toxic or nontoxic but rather the probability that a given compound is toxic or not.

In this way, we can screen out proposed compounds that have a high probability of

being toxic. We trained models to predict toxicity using all cyclically trained models

including latent models with IC50 shaping.

For predicting the toxicity, we made use of a weighted ensemble of different machine

learning algorithms, specifically random forests [11], extra-trees [22], DARTS [51], neural

nets [66], and SVMs [61]. We used grid searches to find the optimal hyperparameters

for each algorithm. We then used a weighting algorithm to find the appropriate weights

for each algorithm in the full ensemble by testing on a validation set. We utilize the

data from the toxicity datasets (see 3.2.4), for training, validating, and evaluating our
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model. Specifically, data from DrugBank and TOXNET were used to train and validate

the models while data from KEGG and T3DB were used to test the models. To predict

the toxicity of compounds, we first projected them to the latent space of each particular

VAE and then calculated key metrics for binary classification. We finally illustrate the

MCC curve and the ROC curve of the VAE-DeepSMILES embedding model because

its embeddings attained the highest accuracy of 67.3%.
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(a) Receiver Operator Curve for the VAE-
DeepSMILES ensemble model for predicting
toxicity.
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VAE-DeepSMILES model for predicting tox-
icity

Figure 4.17: Summary of the VAE-DeepSMILES embeddings for predicting toxicity.
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4.6 Optimizing IC50 and Creating Realistic Drugs

Figure 4.18: Example of optimization of normalized [0,1] log10IC50 in the latent space.

The end goal of optimizing druglike compounds is not to find one particular compound

with high-valued desirable qualities but rather a host of different compounds that can

be later tested. Namely, in this work, we are not searching for the compound with the

highest efficacy. Rather we are searching for a group of compounds in the latent space, Z,

that follow a distribution, q, that have several desirable properties (high QED, low SA).

This distribution q is well considered if it maximizes EZ∼q f (Z) where f is a function

of desirable properties. We employ two methodologies to do this: namely, Bayesian

optimization and genetic algorithms. We do not encounter many of the same issues

formerly addressed by Griffiths et al. [27]; namely, by utilizing a strong transformer

decoder, cyclical annealing, and by utilizing SELFIES, we avoid the prevalence of

"dead areas" in our latent space.

In Gomez-Bombarelli et al. [24], the primary goal was to generate new compounds

that were highly synthesizable and druglike. In addition to this goal, we wish to
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generate compounds with high efficacy against particular types of cancer. Given these

two complementary, although somewhat different goals, we need to optimize two

different objectives when generating new compounds. Thus, we first to optimize IC50 of

compounds against particular transcriptomic profiles in order to generate highly potent

compounds. After optimizing these compounds for their IC50 value, we calculate their

SA scores, QED, logP, and toxicity level and then ensure that we have appropriately

desirable characteristics. More specifically, we seek to ensure that the IC50 metric as

well as the following metric are simultaneously optimised:

5×QED−SAS, (4.2)

This optimization metric was first proposed by Gomez-Bombarelli et al. [24] and has

been used subsequently by others in the literature [26]. This metric indicates how likely

a compound is synthesizable and drug-like.

In order to optimize compounds within the latent space, we utilize our convolutional

encoder to predict the IC50 values of our proposed candidate compounds. We further use

the VAE-DeepSMILES embedding of the proposed compounds to compute the toxicity

probability. We finally use RDKIT to predict QED, logP, and SA scores.

We wish to see whether any of the proposed candidate compounds are similar to

currently approved drugs. For this reason, we also include the nearest Tanimoto similar

drug from the FDA-approved/KEGG dataset and from 617 common anticancer drugs

listed by Rayan et al. [52]. Combined, we compare each compound to 5814 unique drugs.

Lastly, we describe the distribution of the generated compounds’ desirable properties

compared to the compounds within the ChEMBL dataset and a list of anticancer drugs.

In this way, we show how our method generates a host of unique compounds whose

properties exceed those randomly and delicately chosen. We now turn to the actual

optimization algorithms and our approach.
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Data N QED logP SA Score Estimated
log10IC50

ChEMBL 1.6M 0.56(0.21) 3.48(1.80) 2.89(0.76) 2.93(1.45)
ZINC 249k 0.73(0.14) 2.46(1.43) 3.05(0.83) 3.39(1.38)
Approved Cancer
Drugs

194 0.469(0.17) 3.89(1.69) 2.93(0.87) 2.58(1.91)

GA QED/SAS Opt
SELFIES

100 0.91(0.04) 2.74(0.52) 2.37(0.20) 3.19(0.44)

GA QED/SAS Opt
IC50G SELFIES

100 0.92(0.02) 2.87(0.49) 2.02(0.13) 0.94(0.96)

Table 4.4: Summary of the number of samples generated; for datasets, this denotes the number of
compounds. We show also mean and the standard deviation (in parentheses) of selected properties
of the generated molecules and compare them to the properties in ChEMBL, ZINC, and approved
cancer drugs which were used to initialize the optimization algorithm. The approved cancer
drugs are those with known IC50 values for the TE-12 cell line, a carcinoma cell take from the
oesophagus.

4.6.1 Bayesian Optimization (BO)

We utilized Bayesian optimization to explore the latent space of our models and generate

compounds with high efficacy (i.e. low log10IC50). We utilize a BO schema with a

Gaussian Process to approximate the objective and utilize expected improvement for our

acquisition function. We use BO to generate 1000 new points in latent space. We ran

BO IC50 using the cyclically annealed SELFIES embeddings as well as IC50 shaped

SELFIES embeddings. We refer to IC50 shaped embeddings as "SELFIES IC50G".

4.6.2 Genetic Algorithm (GA)

We used a genetic algorithm to explore the latent space of our models and to generate

new compounds. To do so, in addition to exploring variations using Gaussian noise we

combined the latent representations of known anticancer drugs with arithmetic crossover.

We ran the genetic algorithm to optimize the QED/SAS metric as well as the IC50 metric.

After initially optimizing IC50, we found that we managed to discover several potent

compounds; however, simultaneously, these compounds did not have desirable QED or

SA scores. For this reason, after running a genetic algorithm to optimize IC50 values

for 10 generations, we also ran another genetic algorithm for 5 generations to optimize
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the QED/SAS metric. We ran GA IC50 utilizing the cyclically annealed SELFIES

embeddings as well as IC50 shaped SELFIES embeddings.

4.6.3 Drug-likeness and Synthesizability Optimization

(a) Distribution of SA Scores of approved cancer
drugs before and after GA optimization using
SELFIES latent embeddings.

(b) Distribution of SA Scores of approved cancer
drugs before and after GA optimization using
SELFIES IC50 shaped latent.

(c) Distribution of QED of approved cancer
drugs before and after GA optimization using
SELFIES latent embeddings.

(d) Distribution of QED of approved cancer
drugs before and after GA optimization using
SELFIES IC50 shaped latent embeddings.

Figure 4.19: Distribution of QED and SA Scores of found cancer drugs using GA optimization.

We first present results from the optimization of the drug-likeness of generated

compounds using our genetic algorithm. In Table 4.4, we summarize molecules optimized

first for the SAS/QED metric using the GA metric both with SELFIES embeddings

and IC50G SELFIES embeddings. Starting from the "Approved Cancer Drugs" posi-

tions in the latent space, we managed to generate several hundred highly druglike and

synthesizable compounds. Furthermore, as seen in Table 4.4, when we used IC50G

SELFIES embeddings, these compounds were further biased to being potent against

the TE-12 cell line, a carcinoma cell found in the oesophagus. This illustrates the
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usefulness of our approach (solely optimizing for QED/SAS) in generating unique and

high quality druglike compounds.

This is further confirmed in plotting the QED and SAS distribution of QED/SAS

optimized compounds against the distribution of approved cancer drugs. As seen in

Fig. 4.19, we managed to shift the distribution of generated compounds to highly

synthesizable and druglike molecules. We finish this section by displaying examples of

these compounds as well as their nearest "real-life" approved counterpart in Table 4.5.



4. Experiments 54

Discovered Molecule Closest Approved Drug Tanimoto
similarity

C1=CC=C(C=C1)NC(=O)
CCCCCNC(=O)C

Est log10IC50: 2.62 (0.45)

QED: 0.727

logP: 2.32

SAS: 1.55

Tox Prob: 0.18

DB01424

CN(c1c(C)n(n(c1=O) c1ccccc1)C)C

Est log10IC50: 4.14 (0.60)

QED: 0.785

logP: 1.55

SAS: 2.16

0.735

CC1=C(SC(=C1)NC(=O)C)
C2=CC(=CC(=C2)C)S(=O) (=O)C

Est log10IC50: 2.60 (0.28)

QED: 0.941

logP: 3.39

SAS: 2.51

Tox Prob: 0.11

VINZOLIDINE

c12[C@@]34[C@H]
([C@]5([C@H](OC(C)=O)
([C]6([C@@H]3 ([N](CC=C6)CC4)) ...

Est log10IC50: 1.99 (0.97)

QED: 0.13

logP: 5.04

SAS: 7.65

0.411

C1=CC(=CC=C1C2=
CC(=C(S2)NC(=O)C) C(=O)F)F

Est log10IC50: 2.97 (0.35)

QED: 0.873

logP: 3.62

SAS:2.31

Tox Prob: 0.17

D02663

Fc1ccc2c(c1)c1CN
(CCCc3cccnc3)CCc1[nH]2

Est log10IC50: 1.70 (1.01)

QED: 0.80

logP: 3.69

SAS: 2.28

0.532

Table 4.5: Example of QED/SAS optimized molecules from the SMILES-VAE along with most
similar approved drug (by Tanimoto similarity). log10IC50 values were calculated according to
sensitivity to the TE-12 cell line, a carcinoma cell in the oesophagus. We take 1000 points in
the vicinity of each latent point in order to estimate the standard deviation of the estimated IC50
shown in parentheses. QED, logP, and SA scores were calculated using RDKit. DB=DrugBank,
D=KEGG.
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Data N QED logP SA Score Estimated
log10IC50

ChEMBL 1.6M 0.56(0.209) 3.48(1.80) 2.89(0.76) 2.93(1.45)
ZINC 249k 0.73(0.14) 2.46(1.43) 3.05(0.83) 3.39(1.38)
Approved Cancer
Drugs

194 0.469(0.17) 3.89(1.69) 2.93(0.87) 2.58(1.91)

BO SELFIES 1000 0.38(0.17) 4.78(1.65) 3.21(1.33) 2.45(0.85)
BO IC50G SELF-
IES

1000 0.47(0.16)) 0.95(1.49) 4.92(0.81) 0.89(0.38)

GA SELFIES
IC50 Opt

100 0.17(0.06) 5.02(1.11) 5.66(0.38) -4.59(0.08)

GA SELFIES
IC50/QED/SAS
Opt

100 0.75(0.05) 3.01(1.07) 3.99(.27) 0.32(4.13)

GA SELFIES
IC50 Opt IC50G

100 0.39(0.06) 3.75(0.77) 3.98(0.42) -4.67(0.03)

GA SELFIES
IC50/QED/SAS
Opt IC50G

100 0.77(0.2) 3.66(0.59) 3.13(.13) -0.78(2.67)

Table 4.6: Summary of the number of samples generated for comparison; for data, this value
simply reflects the size of the data set. We show mean and the standard deviation (in parentheses)
of selected properties of the generated molecules and compare them to the properties in ChEMBL,
ZINC, and approved cancer drugs which were used to initialize the optimization algorithm. The
approved cancer drugs are those with known IC50 values for the TE-12 cell line, a carcinoma cell
taken from the oesophagus.

4.6.4 IC50 Optimization Against the TE-12 Cell Line

For IC50 optimization we chose to generate compounds that were potent against the

TE-12 cell line, a carcinoma cell in the oesophagus (this was merely the first cell

line in our dataset).

We found that BO generated a wide diversity of points when optimizing for IC50 as

seen in Table 4.6. Specifically, by utilizing IC50G SELFIES we automatically generate

highly potent compounds. While in ChEMBL and ZINC, estimated log10 IC50 is near

3.0, within the IC50G SELFIES BO data, the average estimated log10 IC50 is only 0.89.

However, when we do not use IC50G SELFIES, we do not obtain highly potent compound,

with an average log10 IC50 of 2.45. This illustrates the necessity of shaping the latent

space, if BO is to be used.
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(a) Distribution of log10IC50 of approved cancer
drugs before and after IC50 BO using SELFIES
latent embeddings.

(b) Distribution of log10IC50 of approved cancer
drugs before and after IC50 BO using SELFIES
IC50 shaped latent embeddings.

(c) Distribution of log10IC50 of approved cancer
drugs before and after GA IC50 optimization
using SELFIES latent embeddings.

(d) Distribution of log10IC50 of approved cancer
drugs before and after GA IC50 optimization
using SELFIES IC50 shaped latent embeddings.

(e) Distribution of log10IC50 of approved can-
cer drugs before and after GA IC50/SAS/QED
optimization using SELFIES latent embeddings.

(f) Distribution of log10IC50 of approved can-
cer drugs before and after GA IC50/SAS/QED
optimization using SELFIES IC50 shaped latent
embeddings.

Figure 4.20: Distribution of log10IC50 values in discovered cancer drugs using GA optimization
compared to clinically approved cancer drugs.
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We finally see that by utilizing our GA algorithm that we are able to generate hun-

dreds of highly efficacious compounds. Namely, the average log10 IC50 using both the

IC50G SELFIES latent embeddings and the regular SELFIES is near -4.6. However,

as seen in both cases where we just optimized IC50 values, our SAS and QED values

are relatively poor. We followed IC50 optimization by five generations of SAS/QED

optimization and found that we can increase the diversity of points and generate potent

yet synthesizable compounds.

Furthermore as illustrated in Fig. 4.20, the distribution of predicted log10 IC50 is

pushed further to being potent in every model compared to real cancer drugs (except in

the case of using BO SELFIES). This further supports utilizing this approach to create

highly diverse and efficacious compounds that target a specify cell line.

We finish this section by showing a sampling of generated compounds utilizing our

approach. We show compounds that were generated only utilizing IC50 optimization and

those generated using both IC50 and SAS/QED optimization.
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Discovered Molecule Closest Approved Drug Tanimoto
similarity

CCN1CCCCNC1=N/C(=NC(NS3=N/N=C
S)C(=S)C(=O)C2=CC=CC=C2)C3=N

Est log10IC50: -6.44 (0.53)

QED: 0.13

logP: 2.20

SAS: 5.21

Tox Prob: 0.10

VINZOLIDINE

c12[C@@]34[C@H]([C@]5
([C@H](OC(C)=O)([C]6
([C@@H]3([N](CC=C6)CC4))CC))

Est log10IC50: 1.99 (0.97)

QED: 0.13

logP: 5.04

SAS: 7.65

0.561

CC1=C(SC(=C1)NC(=O)C)C2=CC(=CC(=C2)C)S
(=O)(=O)CCCCC1=NNNC1=N/C(=NC(NC3=C/C=C
C) C(=S)C(=O)C2=CC=CC=C)C3=N

Est log10IC50: -6.50 (0.70)

QED: 0.423

logP: 2.65

SAS: 4.63

Tox Prob: 0.14

VINZOLIDINE

c12[C@@]34[C@H]([C@]5([C@H]
(OC(C)=O)([C]6([C@@H]3([N]
(CC=C6)CC4))CC))

Est log10IC50: 1.99 (0.97)

QED: 0.13

logP: 5.04

SAS: 7.65

0.770

CCN1CCCCNC1=N/C
(=NC(NC3=N/N=C/S)C(=S)C(=O
)C2=CC=CC=C2)C3=N

Est log10IC50: -6.39 (0.09)

QED: 0.134

logP: 1.92

SAS: 4.74

Tox Prob: 0.10

VINZOLIDINE

c12[C@@]34[C@H]([C@]5([C@H](OC(C)=O)
([C]6([C@@H]3([N] (CC=C6)CC4))CC))

Est log10IC50: 1.99 (0.97)

QED: 0.13

logP: 5.04

SAS: 7.65

0.532

Table 4.7: Example of IC50 optimized molecules from the SMILES-VAE along with most similar
approved drug (by Tanimoto similarity). log10 IC50 were calculated according to sensitivity to
the TE-12 cell line, a carcinoma cell in the oesophagus. We take 1000 points in the vicinity of
each latent point in order to estimate the standard deviation of the estimated log10 IC50 shown in
parentheses. QED, logP, and SA scores were calculated using RDKit.
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Discovered Molecule Closest Approved Drug Tanimoto
similarity

CC/C(=N
N1C=N) C(=N1)NC3=C/C=C/C/C (=N
C(=O) C2=CC=CC=C2)C3=O

Est log10IC50: -5.81 (0.76)

QED: 0.626

logP: 2.40

SAS: 3.67

Tox Prob: 0.073

VINZOLIDINE

c12[C@@]34[C@H]([C@]5
([C@H](OC(C)=O)([C]6
([C@@H]3([N](CC=C6)CC4))CC))

Est log10IC50: 1.99 (0.97)

QED: 0.13

logP: 5.04

SAS: 7.65

0.504

CCCC(=N
N1N=N)C(=C1) NC3=C/C=C/C/C(=N
C(=O)C2=CC=CC=C2)C3=O

Est log10IC50: -4.61 (2.38)

QED: 0.745

logP: 3.74

SAS: 3.64

Tox Prob: 0.071

BLEOMYCIN A2

O([C@H]([C@H](NC(c1nc([C@@H]
(NC[C@@H](C(N)=O)N)CC(N)=O)
nc(c1C)N)=O)C(N[C@@H]

Est log10IC50: 4.61 (1.14)

QED: 0.01

logP:-8.71

SAS: 7.39

0.499

CCN1CCCCCC1= N/C(=N
N/C(=N/N=C (C)C3=C)C(=O)
C2=CC=CC=C2)C3=N

Est log10IC50: -5.33 (0.62

QED: 0.753

logP: 3.43

SAS: 4.10

Tox Prob: 0.10

VINZOLIDINE

c12[C@@]34[C@H]([C@]5([C@H](OC(C)=O)
([C]6([C@@H]3([N] (CC=C6)CC4))CC))

Est log10IC50: 1.99 (0.97)

QED: 0.13

logP: 5.04

SAS: 7.65

0.532

Table 4.8: Example of IC50/QED/SAS optimized molecules from the SMILES-VAE along with
most similar approved drug (by Tanimoto similarity). log10 IC50 were calculated according to
sensitivity to the TE-12 cell line, a carcinoma cell in the oesophagus. We take 1000 points in the
vicinity of each latent point in order to estimate the standard deviation of the estimated log10 IC50
shown in parentheses. QED, logP, and SA scores were calculated using RDKit.
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Data N QED logP SA Score Estimated
log10IC50

Approved Cancer
Drugs

203 0.47(0.17) 3.88(1.70) 2.92(0.84) 1.93(2.21)

GA SELFIES
IC50 Opt IC50G

100 0.45(0.12) 3.36(0.81) 3.92(0.38) -4.84(0.03)

Table 4.9: Summary of the number of samples generated. We show mean and the standard
deviation (in parentheses) of selected properties of the generated molecules and compares them to
the mean and standard deviation of properties for generated compounds as well as the approved
cancer drugs which were used to initialize the optimization algorithm.

Lastly, we show compounds that were optimized against a group of cell lines rather

than just one. We show these compounds that were optimized with the GA algorithm

against sarcoma cancer cells. This illustrates our methods’ ability to generate compounds

that can be effective against an entire cancer types. We ran only our GA algorithm to

generate highly potent compounds on this type of cancer. As seen in Table 4.10 and

Figure 4.21: Distribution of log10IC50 of clinically approved cancer drugs and de novo compounds
proposed by GA optimization using SELFIES IC50 shaped latent embeddings.

Fig. 4.21, we can generate over 100 unique drugs with high predicted efficacy for a

variety of sarcoma cell lines. This attempt at discovering new drugs for a cancer type

in particular illustrates the flexibility of our approach. With more data on particular

types of cancer, this approach could be further tailored and generate compounds that

can better address the needs of a given cancer.
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Discovered Molecule Closest Approved Drug Tanimoto
Similarity

CCC1=C2C=C(C=NC2=NC3=C1ON4C3=CC5=
C(C4=O)COC(=O) C5(CC)O)Cl

Est log10IC50: -4.80 (0.01)

QED: 0.51

logP: 2.35

SAS: 3.40

Tox Prob: 0.11

VINZOLIDINE

c12[C@@]34[C@H]([C@]5([C@H](OC(C)=O)
([C]6([C@@H]3([N] (CC=C6)CC4))CC))

Est log10IC50: 1.99 (0.97)

QED: 0.13

logP: 5.04

SAS: 7.65

0.785

Table 4.10: Example of sarcoma IC50 optimized molecules from the SMILES-VAE along with
most similar approved drug (by Tanimoto similarity). We take 1000 points in the vicinity of each
latent point in order to estimate the standard deviation of the estimated IC50 shown in parentheses.
QED, logP, and SA scores were calculated using RDKit.



5
Discussion

5.1 Modelling Compounds

We found that modelling compounds using VAEs was highly effective. We managed

to elicit the logP, QED, and SA scores implicitly in our latent space from compounds

by utilizing cyclical annealing. Unlike Gómez-Bombarelli et al. [24], we did not have

to shape the latent space in order for our models to be responsive to these chemical

properties. This illustrates that our convolutional VAEs were able to effectively learn

important chemical information from our datasets without it having to be explicitly

programmed. Similarly, we found that similar compounds were also grouped together

within our latent space as measured by Tanimoto scores, further showing the information-

density of VAEs trained using cyclical annealing.

We found that the latent spaces could also be trained to be sensitive to particular

transcriptomic profiles. As shown in Fig 4.13, we can engineer a gradient for potency

expressed as IC50 values against a cancerous cell. This illustrates the utility of our

approach in creating efficient mechanisms for later optimization of IC50 values.

5.2 Predicting Toxicity

We can approximate toxicity of various approved drugs by making use of their latent

embeddings. Using the coordinates of these compounds in our latent space as input
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features, we show that an ensemble of machine learning algorithms can effectively predict

toxicity levels. This ensemble allowed us to get a smooth prediction curve of whether a

compound is toxic or not. While we were unable to obtain high accuracy for our model,

we still were able to approximate the probability that a given compound is toxic using this

methodology. A key area of future work would be to collect a larger dataset of approved

drugs and toxic compounds that would allow us to gain a better approximation of toxicity.

We note, however, that in our work, we used approved anticancer drugs as launching

points within the latent space to find new compounds. As a result, we found that many

of our proposed compounds had a relatively low probability of being toxic. Because we

considered any drug that was approved to be "non-toxic", drugs that are similar to these

already approved drugs are also likely to be considered non-toxic. Further investigation of

approved toxicity prediction is need with additional criteria for considering a drug toxic.

Nevertheless, we note in conclusion that by making use of toxicity prediction, we

can effectively screen out compounds that have toxic-like characteristics before further

investigating them, speeding up the drug discovery process.

5.3 Predicting log10 IC50

We found in this work that by shaping the latent space to be sensitive to the RNA

expressions of given cell lines that we could better predict the log10 IC50 of various

compounds against these same cell lines. This makes sense given the gradient that can be

engineered in the latent space towards IC50 efficacy as seen in Fig 4.13. Furthermore, by

making use of these same embeddings, we borrowed powerful predictive power from the

wide range of other chemical substances that exist within the ChEMBL training dataset.

As shown in Fig 4.4, characteristics of the compounds can be automatically learned from

training the VAE. As a result, information that might pertain to a compound’s efficacy

such as its drug-likeness (QED), which is automatically embedded within the latent space,

helped in the prediction. This is a form of transfer learning and is a powerful direction

forward in better predicting log10 IC50 values. This could also further help in designing

new compounds with more desirable properties. By better combining information about
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other compounds and creating ever more dense representations of compounds in the latent

space, we hypothesize that more accurate predictions of log10 IC50 can be achieved.

We note here, however, that these advancements will be limited by underlying

epistemic error in IC50 values. Because IC50 are manually measured in the laboratory

there is inherent error in predicting these values, which limits our ability to make accurate

predictions. A complete evaluation of this error is beyond the scope of this work but

is an area of future work.

Manica et al. [41] utilized an ensemble-based approach to better predict the log10 IC50.

By taking stopping their model at different times during training, and then averaging the

predicted IC50 scores, they were able to get a higher R2 correlation than our approach.

This is an area of future work for our work, as we expect that utilizing this approach

could lead to a higher accuracy and a lower RMSE.

We also wish to further make use of Daylight fingerprints in our model. As found

by Manica et al. [41], counts of atoms and bounds are predictive in estimating a drug’s

efficacy. Since Daylight fingerprints inherently contain this information, we wish to see if

including that information directly in our model will improve results.

Lastly, prediction of IC50 values inherently falls short due to the lack of volume

of high-quality data. One important next step is to acquire more reliable IC50 data so

that we can train even more powerful models.

5.4 Optimizing Compounds

We found that both Bayesian optimization with expected improvement as the acquisition

function, and genetic algorithms can both be effective means of optimizing compounds

for IC50. In particular, because the latent space is amenable to adding Gaussian noise

and performing arithmetic crossover in order to move in the chemical space that genetic

algorithms were particularly effective. Unlike in previous works [24], we do not need

to rely on domain knowledge in our approach to perform genetic algorithms.

We see that our approach can generate a host of unique compounds that are tailored

for specific cell lines and types of cancer. We further see the necessity of utilizing IC50-

shaping in order to generate diverse, but highly efficacious compounds. Again, by having



5. Discussion 65

more data on particular types of cancer, we believe that our approach can be used to

generate a wide range of new compounds that target that particular cancer. Lastly, we

show the utility of our approach in generating compounds that target particular cells. Our

approach highlights a possible future path in personalized medicine.

5.5 Google Colab Issues

We lastly note that in training our models, we ran into the issue of Google Colab timeouts.

Although we paid for a premium subscriptions, the maximum training time of all our

models was limited to 24 hours. For some of our models, this meant fewer epochs

of training. We wish in the future to train our models for longer using a system with

more RAM and a dedicated service.
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A
Additional Graphs

A.1 Tanimoto Similarities

Figure A.1: Tanimoto similarities of 4000 random chemicals compounds from the ChEMBL
test set against a single compound after projecting using linear PCA DeepSMILES latent
representations.
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Figure A.2: Tanimoto similarities of 4000 random chemicals compounds from the ChEMBL test
set against a single compound after projecting using linear PCA SELFIES latent representations.
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Figure A.3: Tanimoto similarities of 4000 random chemicals compounds from the ChEMBL
test set against a single compound after projecting using linear PCA Implicit SMILES latent
representations.
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Figure A.4: Tanimoto similarities of 4000 random chemicals compounds from the ChEMBL test
set against a single compound after projecting using linear PCA Implicit DeepSMILES latent
representations.
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Figure A.5: Tanimoto similarities of 4000 random chemicals compounds from the ChEMBL
test set against a single compound after projecting using linear PCA Implicit SELFIES latent
representations.



B
Selected Code

Most of the code can be found on https://github.com/hanshanley/Private-De-Novo-Drug-

Creation. We provide a selection of code for reference here.
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Train_VAE

September 6, 2020

[ ]: # Initialize drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

[ ]: # Move to Google Drive
%cd drive
%cd 'My Drive'
%cd 'MSc Stats Dissertation'

[ ]: import sys
import os
sys.path.append('/usr/local/lib/python3.7/site-packages/')

[ ]: import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K
import tensorflow.keras as keras
import pandas as pd
import math
import tensorflow.keras.layers as layers
import deepsmiles
import rdkit
import selfies
import time
import numpy as np
import matplotlib.pyplot as plt

[ ]: BATCH_NORM = True
CONV_ACTIVATION = 'tanh'
CONV_DEPTH = 4
CONV_DIM_DEPTH = 32
CONV_DIM_WIDTH = 16
CONV_D_GF = 1.15875438383
CONV_W_GF = 1.1758149644
HIDDEN_DIM = 256
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[ ]: def softmax_logits_loss_with_pad(labels,logits):
weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
nonpad_seq = tf.math.count_nonzero(weights, dtype=tf.dtypes.float32, )
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits␣

↪→=logits)
loss = loss *weights
return tf.reduce_sum(loss)

[ ]: ## Neccesary CONSTANTS
BATCH_SIZE = 256
VOCAB_SIZE = len(vocab_index)
EPOCHS = 40
LEARNING_RATE = 0.000312087049936
DROP_OUT= 0.2
EMBEDDING_DIM = 192 ## Embedding dim of the characters
MAX_LEN = 101 ## Maximum size of a SMILE (100 + BOS, EOS)
PAD_LEN = 250
MAX_LEN = PAD_LEN - 1
DROPOUT = 0.2
TRAIN = True

[ ]: ## Import Necessary Data for training
train_smiles_X = np.load('./vocab/train_deep_smiles_X.npy',allow_pickle=True)
vocab =np.load('./vocab/deep_vocab.npy',allow_pickle=True)
vocab_index = np.load('./vocab/deep_vocab_index.npy',allow_pickle=True)
vocab = dict(vocab.ravel()[0])
vocab_index = dict(vocab_index.ravel()[0])

[ ]: index = np.where(train_smiles_X == 1)
t = np.split(train_smiles_X,index[0].tolist())
t= t[1:]
t = tf.keras.preprocessing.sequence.
↪→pad_sequences(t,maxlen=PAD_LEN,padding='post')

[ ]: NUM_BATCHES = math.floor(len(t)/BATCH_SIZE )

[ ]: NUM_TRAIN_BATCH = math.floor(NUM_BATCHES*0.99)
NUM_TEST_BATCH = math.floor(NUM_BATCHES*(0.01))

[ ]: test_X = t[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

train_X = t[:NUM_TRAIN_BATCH*BATCH_SIZE]

[ ]: ## Cyclical linear annealing ##
def frange_cycle_linear(n_iter, start=0.0, stop=1.0, n_cycle=4, ratio=0.5):

L = np.ones(n_iter) * stop
period = n_iter/n_cycle
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step = (stop-start)/(period*ratio) # linear schedule
for c in range(n_cycle):
v, i = start, 0
while v <= stop and (int(i+c*period) < n_iter):

L[int(i+c*period)] = v
v += step
i += 1

return L

[ ]: def train_smile_vae(vae,train_X, test_X,betas):
clip = -1
display_step = 100
STEPS_PER_EPOCH = train_X.shape[0]//BATCH_SIZE
TEST_STEPS = test_X.shape[0]//BATCH_SIZE
LEARNING_RATE = 1e-4
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
## Index of current annealing
beta_ind = 0
for epoch in range(EPOCHS):

### Ranomdize training data
indxs = np.arange(STEPS_PER_EPOCH)
np.random.shuffle(indxs)

for batch in range(STEPS_PER_EPOCH):
with tf.GradientTape() as tape:

## Get relevant batch data
X_batch = train_X[indxs[batch]*BATCH_SIZE: indxs[batch]*BATCH_SIZE +␣

↪→BATCH_SIZE ]
## Get logits of the model
z_mean, z_log_var, x_decoded = vae(X_batch[:,:-1])
## Get loss oppp
loss_op = vae.vae_loss(labels=X_batch[:,1:],x_decoded =x_decoded,

z_mean =z_mean,z_log_var␣
↪→=z_log_var,beta=betas[beta_ind])

## Apply gradients
gradients = tape.gradient(loss_op, vae.trainable_variables)
if clip != -1:
gradients, _ = tf.clip_by_global_norm(gradients, clip)

optimizer.apply_gradients(zip(gradients, vae.trainable_variables))

### Display information about training ###
if batch % display_step == 0 or batch == 1:

### Get logits for test data
rand_int = np.random.randint(low=0,high = TEST_STEPS)
test_batch = test_X[rand_int*BATCH_SIZE: rand_int*BATCH_SIZE +␣

↪→BATCH_SIZE ]
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z_mean, z_log_var, x_decoded = vae(test_batch[:,:-1])
test_loss = vae.vae_loss(labels=test_batch[:,1:],x_decoded =x_decoded,

z_mean =z_mean,z_log_var =z_log_var,beta=␣
↪→betas[beta_ind])

## Get KL Loss
kl_loss = vae.get_kl_loss(labels=test_batch[:,1:],x_decoded =x_decoded,

z_mean =z_mean,z_log_var =z_log_var,beta=␣
↪→betas[beta_ind])

## Get test logits
pred_test = tf.nn.softmax(x_decoded,axis =-1)
weights = tf.cast(tf.not_equal(test_batch[:,1:], 0), tf.float32)
nonpad_seq = tf.math.count_nonzero(weights, dtype=tf.dtypes.float32, )
correct_pred_test = tf.equal(tf.argmax(pred_test,-1),test_batch[:,1:])

## Get test accuracy
accuracy_test = tf.reduce_sum(tf.cast(correct_pred_test, tf.float32))/

↪→nonpad_seq

### Print out test accuracy on model
print("Step " + str(batch) + ", Training Loss = " + \

"{:.3f}".format(loss_op) + ", Test Loss = " + \
"{:.3f}".format(test_loss)+ ", Test KL Loss = " + \
"{:.3f}".format(kl_loss)+ ", Test Accuracy = " + \
"{:.3f}".format(accuracy_test))

beta_ind += 1
## Save every so often
if (batch) % 3000 == 0:
vae.save_weights('deep_conv_vae_weights2')

[ ]: betas = frange_cycle_linear(train_X.shape[0]//BATCH_SIZE *EPOCHS)
smile_vae = SMILE_VAE(vocab_size= VOCAB_SIZE,embedding_dim=EMBEDDING_DIM,␣
↪→max_len= MAX_LEN,

latent_dim = 64, recurrent_dropout =␣
↪→DROP_OUT,dropout_rate= DROP_OUT)

[ ]: if TRAIN:
train_smile_vae(smile_vae,train_X, test_X,betas)

else:
smile_vae.load_weights('deep_conv_vae_weights2')
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Train_ImplicitVAE

September 6, 2020

[ ]: # Initialize drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

[ ]: # Move to Google Drive
%cd drive
%cd 'My Drive'
%cd 'MSc Stats Dissertation'

[ ]: import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
import tensorflow.keras.backend as K
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import pandas as pd
import math
import time
import numpy as np
import matplotlib.pyplot as plt

[ ]: BATCH_NORM = True
CONV_ACTIVATION = 'tanh'
CONV_DEPTH = 4
CONV_DIM_DEPTH = 32
CONV_DIM_WIDTH = 16
CONV_D_GF = 1.15875438383
CONV_W_GF = 1.1758149644
HIDDEN_DIM = 100

[ ]: ## Import Necessary Data for training
train_smiles_X = np.load('./vocab/train_selfies_X.npy',allow_pickle=True)
vocab =np.load('./vocab/selfies_vocab.npy',allow_pickle=True)
vocab_index = np.load('./vocab/selfies_vocab_index.npy',allow_pickle=True)
vocab = dict(vocab.ravel()[0])
vocab_index = dict(vocab_index.ravel()[0])
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[ ]: ## Neccesary CONSTANTS
BATCH_SIZE = 256
VOCAB_SIZE = len(vocab)
EPOCHS = 40
LEARNING_RATE = 1e-4
Z_X_LEARNING_RATE= 1e-5
DROP_OUT= 0.2
EMBEDDING_DIM = 192 ## Embedding dim of the characters
PAD_LEN = 250 ## Maximum size of a SMILE (100 + BOS, EOS)
MAX_LEN = PAD_LEN -1
DROPOUT = 0.2
LATENT_DIM = 64
HIDDEN_DIM = 256

[ ]: index = np.where(train_smiles_X == 1)
t = np.split(train_smiles_X,index[0].tolist())
t= t[1:]
t = tf.keras.preprocessing.sequence.
↪→pad_sequences(t,maxlen=PAD_LEN,padding='post')

NUM_BATCHES = math.floor(len(t)/BATCH_SIZE )

[ ]: NUM_TRAIN_BATCH = math.floor(NUM_BATCHES*0.99)
NUM_TEST_BATCH = math.floor(NUM_BATCHES*(0.01))

[ ]: test_X = t[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

train_X = t[:NUM_TRAIN_BATCH*BATCH_SIZE]

[ ]: import math
def softmax_logits_loss_with_pad(labels,logits):

weights = tf.cast(tf.not_equal(labels, 0), tf.float32)
nonpad_seq = tf.math.count_nonzero(weights, dtype=tf.dtypes.float32, )
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits␣

↪→=logits)
loss = tf.reduce_sum(loss *weights)
return loss

[ ]: ## Cyclical Annealing ###
def frange_cycle_linear(n_iter, start=0.0, stop=1.0, n_cycle=4, ratio=0.5):

L = np.ones(n_iter) * stop
period = n_iter/n_cycle
step = (stop-start)/(period*ratio) # linear schedule
for c in range(n_cycle):
v, i = start, 0
while v <= stop and (int(i+c*period) < n_iter):

L[int(i+c*period)] = v
v += step
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i += 1
return L

[ ]: def train_smile_vae(smile_ivae,train_X, test_X,model_type, betas, num_updates):
clip = -1
display_step = 100
STEPS_PER_EPOCH = train_X.shape[0]//BATCH_SIZE
TEST_STEPS = test_X.shape[0]//BATCH_SIZE

## Define optimizers
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
optimizer_xz = tf.keras.optimizers.Adam(learning_rate=Z_X_LEARNING_RATE)
optimizer_z = tf.keras.optimizers.Adam(learning_rate=Z_X_LEARNING_RATE)

## Cyclical Annealing index ##
beta_ind = 0

for epoch in range(EPOCHS):
indxs = np.arange(STEPS_PER_EPOCH)
np.random.shuffle(indxs)
for batch in range(STEPS_PER_EPOCH):

## Get relevant batch data
X_batch = train_X[indxs[batch]*BATCH_SIZE: indxs[batch]*BATCH_SIZE +␣

↪→BATCH_SIZE]

## Update the auxillary network
for n in range(num_updates):
eps = tf.convert_to_tensor(np.random.normal(size=(X_batch.shape[0],␣

↪→LATENT_DIM)),dtype = tf.float32)
with tf.GradientTape() as kl_xz_tape, tf.GradientTape() as kl_z_tape:

## Get encoding of training data
enc, z_x = smile_ivae.encoder(X_batch[:,:-1],eps)
kl_xz_vars = smile_ivae.nu_xz.trainable_variables
kl_z_vars = smile_ivae.nu_z.trainable_variables

## Get logits of the model
kl_xz = smile_ivae.kl_xz_loss(z_x =z_x, enc = enc)
kl_z = smile_ivae.kl_z_loss(z_x = z_x)

## KL updates
gradients = kl_xz_tape.gradient(kl_xz, kl_xz_vars)
if clip != -1:

gradients, _ = tf.clip_by_global_norm(gradients, clip)
optimizer_xz.apply_gradients(zip(gradients, kl_xz_vars))

gradients = kl_z_tape.gradient(kl_z, kl_z_vars)
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if clip != -1:
gradients, _ = tf.clip_by_global_norm(gradients, clip)

optimizer_z.apply_gradients(zip(gradients, kl_z_vars))

with tf.GradientTape() as tape:
## end to end update for implict model
x_decoded, enc, z_x = smile_ivae(X_batch[:,:-1])
vars = smile_ivae.decoder.trainable_variables
vars.extend(smile_ivae.encoder.trainable_variables)
loss_op = softmax_logits_loss_with_pad(labels=X_batch[:,1:],logits␣

↪→=x_decoded)

## Model update using auxillary network and softmax
if model_type == 'mle':

loss_op = loss_op +( betas[beta_ind]*tf.reduce_sum(smile_ivae.
↪→nu_xz(z_x =z_x, enc = enc)))

else:
loss_op = loss_op + (betas[beta_ind] *tf.reduce_sum(smile_ivae.

↪→nu_z(z_x = z_x)))
gradients = tape.gradient(loss_op, vars)
if clip != -1:
gradients, _ = tf.clip_by_global_norm(gradients, clip)

optimizer.apply_gradients(zip(gradients, vars))

## Display training information
if batch % display_step == 0 or batch == 1:

### Get logits for test data
rand_int = np.random.randint(low=0,high = TEST_STEPS)
test_batch = test_X[rand_int*BATCH_SIZE: rand_int*BATCH_SIZE +␣

↪→BATCH_SIZE ]
x_decoded, enc, z_x = smile_ivae(test_batch[:,:-1])
test_loss = softmax_logits_loss_with_pad(labels=test_batch[:,1:],logits␣

↪→=x_decoded)

## Get testing loss
if model_type == 'mle':

test_loss = test_loss +(betas[beta_ind]*tf.reduce_mean(smile_ivae.
↪→nu_xz(z_x =z_x, enc = enc)))

else:
test_loss = test_loss + (betas[beta_ind] *tf.reduce_mean(smile_ivae.

↪→nu_z(z_x = z_x)))

## Get testing information for displaying accuracy ##
pred_test = tf.nn.softmax(x_decoded,axis =-1)
weights = tf.cast(tf.not_equal(test_batch[:,1:], 0), tf.float32)
nonpad_seq = tf.math.count_nonzero(weights, dtype=tf.dtypes.float32, )
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correct_pred_test = tf.equal(tf.argmax(pred_test,-1),test_batch[:,1:])
accuracy_test = tf.reduce_sum(tf.cast(correct_pred_test, tf.float32))/

↪→nonpad_seq

## Get regularizing loss for model
if model_type == 'mle':

kl_loss = betas[beta_ind]*tf.reduce_sum(smile_ivae.nu_xz(z_x =z_x,␣
↪→enc = enc))

else:
kl_loss = betas[beta_ind] *tf.reduce_sum(smile_ivae.nu_z(z_x = z_x))

### Print out test accuracy on model
print("Step " + str(batch) + ", Training Loss = " + \

"{:.3f}".format(loss_op) + ", Test Loss = " + \
"{:.3f}".format(test_loss) + ", Test Accuracy = " + \
"{:.3f}".format(accuracy_test) +", Implict KL value = " + \
"{:.3f}".format(kl_loss))

beta_ind+=1
## Save every so often
if (batch) % 3000 == 0:
smile_ivae.save_weights('selfies_ivae_weights')

[ ]: betas = frange_cycle_linear(train_X.shape[0]//BATCH_SIZE *EPOCHS)
smile_ivae = SMILE_IMPLICIT_VAE(vocab_size =VOCAB_SIZE,embedding_dim␣
↪→=EMBEDDING_DIM,

max_len =MAX_LEN, latent_dim=LATENT_DIM, hidden_dim= HIDDEN_DIM,
recurrent_dropout =0.2,dropout_rate=0.2,epsilon_std = 1.0)

[ ]: ## Train with 3 updates of auxillary network for every end to
## end update
train_smile_vae(smile_ivae,train_X,test_X,'mle_li',betas,3)

[ ]: smile_ivae.summary()
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Train_IC50Predictions

September 6, 2020

[ ]: # Initialize drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

[ ]: # Move to Google Drive
%cd drive
%cd 'My Drive'
%cd 'MSc Stats Dissertation'

[ ]: !wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
!chmod +x Miniconda3-latest-Linux-x86_64.sh
!time bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local
!time conda install -q -y -c conda-forge rdkit
!pip install selfies
!pip install deepsmiles

[ ]: import sys
import os
sys.path.append('/usr/local/lib/python3.7/site-packages/')

[ ]: import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K
import tensorflow.keras as keras
import pandas as pd
import math
import tensorflow.keras.layers as layers
from selfies import encoder, decoder
import deepsmiles
import rdkit
import time
import numpy as np
import matplotlib.pyplot as plt

[ ]: ## Import Necessary Data for training
train_smiles_X = np.load('./vocab/train_selfies_X.npy',allow_pickle=True)
vocab =np.load('./vocab/selfies_vocab.npy',allow_pickle=True)
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vocab_index = np.load('./vocab/selfies_vocab_index.npy',allow_pickle=True)
vocab = dict(vocab.ravel()[0])
vocab_index = dict(vocab_index.ravel()[0])
gene_expressions = np.load('./Datasets/ordered_gene_expressions.npy')
ic50 = np.load('./Datasets/ordered_ic50.npy')
smiles_pairs = np.load('./Datasets/ordered_smiles.npy')

[ ]: ## Neccesary CONSTANTS
BATCH_SIZE = 256
VOCAB_SIZE = len(vocab_index)
EPOCHS = 30
LEARNING_RATE = 1e-4
DROP_OUT= 0.2
EMBEDDING_DIM = 192 ## Embedding dim of the characters
LATENT_DIM = 64
PAD_LEN = 250
MAX_LEN = PAD_LEN -1
DROPOUT = 0.2
TRAIN = True

[ ]: ## Get randomized chemistry of different smiles strings
## for training
from rdkit import Chem
def randomlabels(mol, N):

ans = set()
mol_ex = None
if mol.find('.') != -1:
mol_ex = mol[mol.find('.'):]
mol = mol[:mol.find('.')]

molt = Chem.MolFromSmiles(mol)
while len(ans) < N:

if mol_ex == None:
ans.add(Chem.MolToSmiles(molt,doRandom=True,canonical=True))

else:
ans.add(Chem.MolToSmiles((molt),doRandom=True,canonical=True)+mol_ex)

return sorted(list(ans))

[ ]: ## converts smiles to seflies smiles
def get_smiles_from_selfies(selfies_list):

smiles = []
for selfie in selfies_list:

try:
smile = decoder(selfie)

except:
smile = None

smiles.append(smile)
return smiles
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[ ]: def integer_encode_selfies(selfies,vocab_dict):
selfies_enc = []
for char in selfies:
selfies_enc.append(vocab_dict[char])

return selfies_enc

[ ]: ## Splits the selfies <molecule> into a list of character strings.
def split_selfie(molecule):

return re.findall(r'\[.*?\]|\.', molecule)

[ ]: ## Takes processed selfies smiles and returns the tokenized
## versions of the selfies
def tokenize_selfies(selfies):

char_list = split_selfie(selfies)
tokenized= []
tokenized.append('<BOS>')
i = 0
while i < len(char_list):
char = char_list[i]
tokenized.append(char)
i = i+1

tokenized.append('<EOS>')
return tokenized

[ ]: import re
## replace Br and Cl with single letters
def replace_halogens(string):

br = re.compile('Br')
cl = re.compile('Cl')
string = br.sub('R', string)
string = cl.sub('L', string)
return string

[ ]: ### Properly scale data
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(ic50.reshape(-1,1))
ic50 = scaler.transform(ic50.reshape(-1,1))
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(gene_expressions)
gene_expressions = scaler.transform(gene_expressions)

[ ]: new_gene_expressions = []
new_ic50 = []
new_smile_pairs = []
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[ ]: ## Get training data for guided training
for i in range(len(smiles_pairs)):

if i % 10000 == 0:
print(i)

random_mols = randomlabels(smiles_pairs[i],8)
if SELFIES:

for mols in random_mols:
new_smile_pairs.append(encoder(mols))

else:
new_smile_pairs.extend(random_mols)

for j in range(len(random_mols)):
new_gene_expressions.append(gene_expressions[i])
new_ic50.append(ic50[i])

gene_expressions= new_gene_expressions
ic50 = new_ic50
smiles_pairs = new_smile_pairs

[ ]: smile_pair_tokens = []
for smiles in smiles_pairs:

if SELFIES:
smile_pair_tokens.append(tokenize_selfies(smiles))

else:
smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(smiles))

smile_pair_tokens = np.array(smile_pair_tokens)

[ ]: smiles_ordered = []
for smiles in smile_pair_tokens:

if SELFIES:
smiles_ordered.append(integer_encode_selfies(smiles,vocab))

else:
smiles_ordered.append(integer_encode(smiles,vocab))

smiles_ordered = np.array(smiles_ordered)

[ ]: t = tf.keras.preprocessing.sequence.
↪→pad_sequences(smiles_ordered,maxlen=PAD_LEN,padding='post')

NUM_BATCHES = math.floor(len(t)/BATCH_SIZE )

[ ]: NUM_TRAIN_BATCH = math.floor(NUM_BATCHES*0.99)
NUM_TEST_BATCH = math.floor(NUM_BATCHES*(0.01))

[ ]: test_smiles = t[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

train_smiles = t[:NUM_TRAIN_BATCH*BATCH_SIZE]

test_genes = gene_expressions[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

4



train_genes = gene_expressions[:NUM_TRAIN_BATCH*BATCH_SIZE]

test_ic50 = ic50[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

train_ic50 = ic50[:NUM_TRAIN_BATCH*BATCH_SIZE]

[ ]: import GANS.ic50vae as conv_smiles_vae
smile_vae = conv_smiles_vae.SMILE_VAE(vocab_size=␣
↪→VOCAB_SIZE,embedding_dim=EMBEDDING_DIM, max_len= MAX_LEN,

latent_dim = LATENT_DIM, recurrent_dropout =␣
↪→DROP_OUT,dropout_rate= DROP_OUT)

if SELFIES:
smile_vae.load_weights('ic50g_selfies_conv_vae_weights')

else:
smile_vae.load_weights('smiles_conv_vae_weights2')

[ ]: mca_ic50 = ic50mca.IC50_MCA(vocab_size=VOCAB_SIZE,
embedding_dim =EMBEDDING_DIM, num_genes =2128,
hidden_dim = HIDDEN_DIM, max_len = MAX_LEN,
latent_dim = LATENT_DIM)

[ ]: def train_smile_gene_ca(mca_ic50,smile_vae,
train_smiles,train_genes,train_ic50,
test_smiles, test_genes,test_ic50):

clip = -1
display_step = 100
STEPS_PER_EPOCH = train_smiles.shape[0]//BATCH_SIZE
TEST_STEPS = test_smiles.shape[0]//BATCH_SIZE
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-6)

for epoch in range(EPOCHS):
## Randomize the training process
indxs = np.arange(STEPS_PER_EPOCH)
np.random.shuffle(indxs)
total_train_loss = 0
for batch in range(STEPS_PER_EPOCH):

with tf.GradientTape() as tape:

## Get relevant batch data
train_smiles_batch = np.array(train_smiles[indxs[batch]*BATCH_SIZE:␣

↪→indxs[batch]*BATCH_SIZE + BATCH_SIZE])
train_gene_batch = np.array(train_genes[indxs[batch]*BATCH_SIZE:␣

↪→indxs[batch]*BATCH_SIZE + BATCH_SIZE])
train_ic50_batch = np.array(train_ic50[indxs[batch]*BATCH_SIZE:␣

↪→indxs[batch]*BATCH_SIZE + BATCH_SIZE])
## Get logits of the model
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h, z_mean,z_log_var = smile_vae.encoder(train_smiles_batch[:,:-1])
z = tf.keras.layers.Lambda(smile_vae.encoder.sample,

output_shape =(LATENT_DIM,))([z_mean,z_log_var])

## Get ic50 prediction
ic50_pred = mca_ic50(encoded_smiles = z_mean, genes = train_gene_batch)
loss_op = tf.reduce_sum(tf.keras.losses.MSE(train_ic50_batch,ic50_pred))
total_train_loss += loss_op

## Apply gradients
gradients = tape.gradient(loss_op, mca_ic50.trainable_variables)
if clip != -1:
gradients, _ = tf.clip_by_global_norm(gradients, clip)

optimizer.apply_gradients(zip(gradients, mca_ic50.trainable_variables))

## Diplay training loss information ##
if batch % display_step == 0 or batch == 1:

### Get logits for test data
rand_int =np.random.randint(low=0,high = TEST_STEPS)
test_smiles_batch = np.array(test_smiles[rand_int*BATCH_SIZE:␣

↪→rand_int*BATCH_SIZE + BATCH_SIZE])
test_gene_batch = np.array(test_genes[rand_int*BATCH_SIZE:␣

↪→rand_int*BATCH_SIZE + BATCH_SIZE])
test_ic50_batch = np.array(test_ic50[rand_int*BATCH_SIZE:␣

↪→rand_int*BATCH_SIZE + BATCH_SIZE])

### Encode data using encoder
h, z_mean,z_log_var = smile_vae.encoder(test_smiles_batch[:,:-1])
z = tf.keras.layers.Lambda(smile_vae.encoder.sample,

output_shape =(LATENT_DIM,))([z_mean,z_log_var])

## Get prediction
ic50_pred_test = mca_ic50(encoded_smiles = z_mean,

genes = test_gene_batch,training=False)

### Print out test accuracy on model
test_loss = tf.reduce_sum(tf.keras.losses.MSE(test_ic50_batch,

ic50_pred_test))

print("Step " + str(batch) + ", Training Loss = " + \
"{:.3f}".format(tf.reduce_mean(loss_op)) + ", Test Loss = " + \
"{:.3f}".format(tf.reduce_mean(test_loss)))

if (batch) == STEPS_PER_EPOCH-1:
print("TOTAL TRAINING LOSS " + "{:.3f}".format(tf.

↪→reduce_sum(total_train_loss)))
if (batch) % 3000 == 0:
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mca_ic50.save_weights('ic50network_selfies_ic50g')

[ ]: if TRAIN:
train_smile_gene_ca(mca_ic50,smile_vae,

train_smiles,train_genes,train_ic50,
test_smiles, test_genes,test_ic50)

else:
mca_ic50.load_weights('ic50network_selfies_ic50g')

[ ]: mca_ic50.summary()
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Ensmeble_PredTox

September 6, 2020

[ ]: # Initialize drive|
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

[ ]: # Move to Google Drive
%cd drive
%cd 'My Drive'
%cd 'MSc Stats Dissertation'

[ ]: ## Install necessary libraries
!pip install deepsmiles
!pip install selfies
!wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
!chmod +x Miniconda3-latest-Linux-x86_64.sh
!time bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local
!time conda install -q -y -c conda-forge rdkit

[ ]: ## Go to correct place in drive to allow us
## to import libraries
import sys
import os
sys.path.append('/usr/local/lib/python3.7/site-packages/')

[ ]: ## Import Necessary lIbraries
import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K
import tensorflow.keras as keras
import pandas as pd
import math
import tensorflow.keras.layers as layers
import time
import numpy as np
import matplotlib.pyplot as plt
import lightgbm as lgb
from sklearn.metrics import matthews_corrcoef
import deepsmiles
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from selfies import encoder, decoder
import rdkit
import Utils.generate_utils as generate_utils
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix, accuracy_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import accuracy_score, roc_auc_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis,␣
↪→QuadraticDiscriminantAnalysis

from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from imblearn.under_sampling import RandomUnderSampler

[ ]: ## Converter to convert SMILES to Deep SMILES
converter = deepsmiles.Converter(rings = True, branches = True)

[ ]: ## Set to correct float type for consistency with training
tf.keras.backend.set_floatx('float32')

[ ]: ## Import data files
SELFIES = False
DEEP = False
train_smiles_path = './Datasets/train_Tox_data.smi'
test_smiles_path = './Datasets/AID_1189_datatable_all.csv'
actual_test_smiles_path = './Datasets/3643044675069416146.txt'
if SELFIES:

vocab =np.load('./vocab/selfies_vocab.npy',allow_pickle=True)
vocab_index = np.load('./vocab/selfies_vocab_index.npy',allow_pickle=True)

elif DEEP:
vocab =np.load('./vocab/deep_vocab.npy',allow_pickle=True)
vocab_index = np.load('./vocab/deep_vocab_index.npy',allow_pickle=True)

else:
vocab =np.load('./vocab/vocab.npy',allow_pickle=True)
vocab_index = np.load('./vocab/vocab_index.npy',allow_pickle=True)

vocab = dict(vocab.ravel()[0])
vocab_index = dict(vocab_index.ravel()[0])
smiles_train = pd.read_csv(train_smiles_path,delimiter='\t',header=None)

MIN = 3027

[ ]: ## Load in file and process it for later predcitions
smiles_test = pd.read_csv(test_smiles_path,delimiter=',')
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actual_test_smiles = pd.read_csv(actual_test_smiles_path,delimiter='\t',header␣
↪→= None)

train =[]
test = []
train_Y = []
test_Y = []
for index in range(len(smiles_train[1])):

if smiles_train[1][index][:2] =='DB':
test.append(index)
test_Y.append(0)

elif smiles_train[1][index][:1] =='D':
train.append(index)
train_Y.append(0)

elif smiles_train[1][index][:2] =='T3':
test.append(index)
test_Y.append(1)

else:
train.append(index)
train_Y.append(1)

train_X = smiles_train[0][train]
test_X = smiles_train[0][test]

[ ]: ## Neccesary CONSTANTS
BATCH_SIZE = 64
VOCAB_SIZE = len(vocab)
EPOCHS = 10
LEARNING_RATE = 0.000312087049936
if SELFIES or DEEP:

PAD_LEN = 250
else:

PAD_LEN = 160 ## Maximum size of a SMILE (100 + BOS, EOS)
print('HERE')

MAX_LEN = PAD_LEN
DROP_OUT= 0.2
EMBEDDING_DIM = 192 ## Embedding dim of the characters
HIDDEN_DIM = 256
DROPOUT = 0.2
TRAIN = False
LATENT_DIM = 64
TRANSFORMER_DECODE = True

[ ]: ## Integer encode for selfies
def integer_encode_selfies(selfies,vocab_dict):

selfies_enc = []
for char in selfies:

try:
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selfies_enc.append(vocab_dict[char])
except:

return None
return selfies_enc

[ ]: ## Splits the selfies <molecule> into a list of character strings.
def split_selfie(molecule):

return re.findall(r'\[.*?\]|\.', molecule)

## Takes processed selfies smiles and returns the tokenized
## versions of the selfies
def tokenize_selfies(selfies):

char_list = split_selfie(selfies)
tokenized= []
tokenized.append('<BOS>')
i = 0
while i < len(char_list):
char = char_list[i]
tokenized.append(char)
i = i+1

tokenized.append('<EOS>')
return tokenized

[ ]: import re
## replace Br and Cl with single letters
def replace_halogens(string):

br = re.compile('Br')
cl = re.compile('Cl')
string = br.sub('R', string)
string = cl.sub('L', string)
return string

[ ]: ## Takes processed smiles/deep smiles and returns the tokenized
## versions of the smiles or deep semiles
## Note: Run replace halogens and replace percentages
## before running this method
def tokenize_smiles(smiles):

char_list = list(smiles)
tokenized= []
tokenized.append('<BOS>')
i = 0
while i < len(char_list):
char = char_list[i]
tokenized.append(char)
i= i+1

tokenized.append('<EOS>')
return tokenized
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[ ]: ## Integer encode fore SMILES and DeepSMILES
def integer_encode(smiles,vocab_dict):

smiles_enc = []
for char in smiles:

if char in vocab:
smiles_enc.append(vocab_dict[char])

else:
return None

return smiles_enc

[ ]: ## Process for later prediction
smile_pair_tokens = []
indexes = []
index = 0
for smiles in train_X:

if SELFIES:
smiles = encoder(smiles)
if smiles is not None:

indexes.append(index)
smile_pair_tokens.append(tokenize_selfies(smiles))

elif DEEP:
smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(converter.encode(smiles)))

else:
smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(smiles))

index = index+1
smile_pair_tokens = np.array(smile_pair_tokens)
if SELFIES:

train_Y = np.array(train_Y)[indexes]

smiles_ordered = tf.keras.preprocessing.sequence.
↪→pad_sequences(smiles_ordered,maxlen = PAD_LEN,padding='post')

tox_smiles = np.array(smiles_ordered)

[ ]: ## Prrocess for later prediction
smiles_ordered = []
indexes = []
index = 0
for smiles in smile_pair_tokens:

if SELFIES:
encoded_smile = integer_encode_selfies(smiles,vocab)
if encoded_smile is not None:

smiles_ordered.append(encoded_smile)
else:

smiles_ordered.append(None)
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else:
smiles_ordered.append(integer_encode(smiles,vocab))

l=[i for i,v in enumerate(smiles_ordered) if v != None ]
smiles_ordered = np.array(smiles_ordered)[l]
train_Y = np.array(train_Y)[l]
l=[i for i,v in enumerate(smiles_ordered) if len(v) <MAX_LEN]
smiles_ordered = np.array(smiles_ordered)[l]
train_Y = train_Y[l]

smile_pair_tokens = []
indexes = []
index = 0
for smiles in test_X:

if SELFIES:
smiles = encoder(smiles)
if smiles is not None:

indexes.append(index)
smile_pair_tokens.append(tokenize_selfies(smiles))

elif DEEP:
smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(converter.encode(smiles)))

else:
smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(smiles))

index = index+1
smile_pair_tokens = np.array(smile_pair_tokens)
if SELFIES:

test_Y = np.array(test_Y)[indexes]

smiles_ordered = []
for smiles in smile_pair_tokens:

if SELFIES:
encoded_smile = integer_encode_selfies(smiles,vocab)
smiles_ordered.append(encoded_smile)

else:
smiles_ordered.append(integer_encode(smiles,vocab))

l=[i for i,v in enumerate(smiles_ordered) if v != None ]
smiles_ordered = np.array(smiles_ordered)[l]
test_Y = np.array(test_Y)[l]
l=[i for i,v in enumerate(smiles_ordered) if len(v) <MAX_LEN]
cancer_smiles = np.array(smiles_ordered)[l]
test_Y = test_Y[l]
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[ ]: import GANS.renewed_smiles_vae as conv_smiles_vae
import GANS.ic50vae as ic50vae

## Import in the VAE so that embeddings of different compounds can be calculated
if IC50:

smile_vae = ic50vae.SMILE_VAE(vocab_size=␣
↪→VOCAB_SIZE,embedding_dim=EMBEDDING_DIM, max_len= MAX_LEN,

latent_dim = LATENT_DIM, recurrent_dropout =␣
↪→DROP_OUT,dropout_rate= DROP_OUT)
if DEEP:
print('IC50 DEEP')
smile_vae.load_weights('ic50g_deep_conv_vae_weights')

elif SELFIES:
print('IC50 SELFIES')
smile_vae.load_weights('ic50g_selfies_conv_vae_weights')

else:
print('IC50 NORMAL')
smile_vae.load_weights('ic50g_smiles_conv_vae_weights')

else:
smile_vae = conv_smiles_vae.SMILE_VAE(vocab_size=␣

↪→VOCAB_SIZE,embedding_dim=EMBEDDING_DIM, max_len= MAX_LEN,
latent_dim = LATENT_DIM, recurrent_dropout =␣

↪→DROP_OUT,dropout_rate= DROP_OUT)
if DEEP:
print('DEEP')
smile_vae.load_weights('deep_conv_vae_weights2')

elif SELFIES:
print('SELFIES')
smile_vae.load_weights('selfies_conv_vae_weights2')

else:
print('NORMAL')
smile_vae.load_weights('smiles_conv_vae_weights2')

[ ]: ## Get the latents representations for the training data
train_latents = []
index = 0
for smile in smiles_ordered:

train_latents.append(smile_vae.encoder(smile.reshape(1,MAX_LEN))[1])
if index %1000 == 0:
print(index)

index+=1

[ ]: ## Get test representations for the test data
cancer_smiles = tf.keras.preprocessing.sequence.
↪→pad_sequences(cancer_smiles,maxlen = PAD_LEN,padding='post')

cancer_smiles = np.array(cancer_smiles)
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test_latents = []
index = 0
for smile in cancer_smiles:

test_latents.append(smile_vae.encoder(smile.reshape(1,MAX_LEN))[1])
if index %100 == 0:
print(index)

index+=1
test_latents = np.array(test_latents)

[ ]: def train_model(model,train_X,train_Y,test_X,test_Y):
model.fit(train_X,train_Y.ravel())
predictions = model.predict(test_X)
probs = model.predict_proba(test_X)
print(classification_report(test_Y, predictions))
print(confusion_matrix(test_Y, predictions))
print(accuracy_score(test_Y, predictions))
print(matthews_corrcoef(test_Y, predictions))
return predictions, probs

[ ]: def test_on_model(model,test_X,test_Y):
predictions = model.predict(test_X)
probs = model.predict_proba(test_X)
print(classification_report(test_Y, predictions))
print(confusion_matrix(test_Y, predictions))
print(accuracy_score(test_Y, predictions))
print(matthews_corrcoef(test_Y, predictions))
return predictions, probs

[ ]: def get_mcc_curve(y_true, predictions_prob):
cutoffs = np.arange(0,1,1e-4)
mccs = []
for cutoff in cutoffs:
predictions = labels = (predictions_prob > cutoff).astype(np.int)
mccs.append(matthews_corrcoef(y_true, predictions))

return cutoffs, mccs

[ ]: import matplotlib
## plot ROC curve
def plot_roc_curve(y_true, y_probs, title):

fpr = dict()
tpr = dict()
roc_auc = dict()
fpr, tpr, _ = roc_curve(y_true, y_probs, pos_label=1)
roc_auc = auc(fpr, tpr)
matplotlib.rc('font', size=20)
fig = plt.figure(figsize=(8, 8))
lw = 2

8



plt.plot(fpr, tpr, color='black',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)

plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('FPR')
plt.ylabel('TPR')
plt.legend(loc="lower right")
fig.tight_layout()
fig.savefig("./Figures/" + title + ".pdf", bbox_inches='tight')
plt.show()

## plot MCC curve
def plot_mcc_curve(y_true, y_probs,title ):

cuttofs, mccs = get_mcc_curve(y_true,y_probs)
matplotlib.rc('font', size=20)
fig = plt.figure(figsize=(8, 8))
lw = 2
plt.plot(cuttofs, mccs, color='black',

lw=lw)
#plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 0.41])
plt.xlabel('Toxicity Probability Cutoff')
plt.ylabel('MCC')
#plt.legend(loc="lower right")
fig.tight_layout()
fig.savefig("./Figures/" + title + ".pdf", bbox_inches='tight')
plt.show()

## plot Confusion Matrix
def plot_confusion_matrix(y_true, y_pred, classes, title,

normalize=False, cmap=plt.cm.Blues):
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
# classes = classes[unique_labels(y_true, y_pred)]
if normalize:

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")

else:
print('Confusion matrix, without normalization')

matplotlib.rc('font', size=20)
fig = plt.figure(figsize=(12, 12))
ax = fig.add_subplot(111)
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im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),

yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
ylabel='True label',
xlabel='Predicted label')

_ = plt.xlabel("Predicted Labels", fontsize=18)
_ = plt.ylabel("True label", fontsize=18)

plt.rc('xtick', labelsize=14)
plt.rc('ytick', labelsize=14)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",

rotation_mode="anchor")

# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):

for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),

ha="center", va="center", fontsize=14,
color="white" if cm[i, j] > thresh else "black")

fig.tight_layout()
fig.savefig("./Figures/" + title + ".pdf", bbox_inches='tight')
return ax

[ ]: train_latents = np.array(train_latents).reshape(-1,64)#
test_latents = np.array(test_latents).reshape(-1,64)

[ ]: ## Parameters for performing grid searches
params = {

'boosting_type': 'dart',
'objective': 'binary',
'metric': 'binary_logloss',
'learning_rate': 0.05,
'feature_fraction': 0.85,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 0,
}

param_grid ={'boosting_type': ['dart','lgbm'],
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'objective': ['binary'],
'n_estimators': [1200,1400,1600,1800],
'learning_rate': [0.1,0.05],
'feature_fraction': [0.9,1.0],
'num_leaves' :[31,63,127,255,511,800],
'lambda_l2 ':[0.0,0.1,0.5,1,5]
}

[ ]: # make an ensemble prediction for classification
def ensemble_probabilities(members, testX):

# make predictions
yhats = [model.predict_proba(testX)[:,1] for model in members]
yhats = np.array(yhats)
# sum across ensemble members
summed = np.sum(yhats, axis=0)
# argmax across classes
result = summed/len(members)
return np.reshape(result,(len(result),1))

def ensemble_predictions(members, testX):
# make predictions
yhats = [model.predict(testX) for model in members]
yhats = np.array(yhats)
# sum across ensemble members
summed = np.sum(yhats, axis=0)
# argmax across classes
result = summed/len(members)
return np.reshape(result,(len(result),1))

[ ]: from sklearn import metrics

def TPR(y_true, y_pred):
# counts the number of true positives (y_true = 1, y_pred = 1)
tp = list((y_true == 1) & (y_pred == 1)).count(True)
n = list((y_true == 1)).count(True)
return tp/n

def FNR(y_true, y_pred):
# counts the number of false negatives (y_true = 1, y_pred = 0)
fn = list((y_true == 1) & (y_pred == 0)).count(True)
p = list(y_true == 1).count(True)
return fn/p

def FPR(y_true, y_pred):
# counts the number of false positives (y_true = 0, y_pred = 1)
fp = list((y_true == 0) & (y_pred == 1)).count(True)
n = list(y_true == 0).count(True)
return fp/n

def TNR(y_true, y_pred):
# counts the number of true negatives (y_true = 0, y_pred = 0)
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tn= list((y_true == 0) & (y_pred == 0)).count(True)
n = list(y_true == 0).count(True)
return tn/n

[ ]: ## Found parameters for the DART and LGBM models
params_lgbm = {

'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'binary_logloss',
'learning_rate': 0.05,
'feature_fraction': 1.0,
'num_leaves':63,
'verbose': 1,
'min_data_in_leaf':10,
' n_estimators' : 2000,
}

params_dart = {
'boosting_type': 'dart',

'objective': 'binary',
'metric': 'binary_logloss',
'learning_rate': 0.05,
'feature_fraction': 1.0,
'num_leaves':127,
'verbose': 1,
'min_data_in_leaf':10,
' n_estimators' : 2000,
}

[ ]: from sklearn.ensemble import ExtraTreesClassifier
param_grid ={'max_depth': [10, 20, 30, 40, 50,60,70,80,90,100],

'n_estimators': [100,200, 400, 600, 800, 1000, 1200]}

[ ]: import tensorflow.keras as keras
def get_nnmodel():

my_init = keras.initializers.glorot_uniform(seed=1)
model = keras.models.Sequential()
model.add(keras.layers.Dense(units=4096, input_dim=64,
activation='relu', kernel_initializer=my_init))

model.add(keras.layers.Dropout(0.7))
model.add(keras.layers.Dense(units=2048, activation='relu',
kernel_initializer=my_init))

model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=1024, activation='relu',
kernel_initializer=my_init))
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model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=512, activation='relu',
kernel_initializer=my_init))

model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=256, activation='relu',
kernel_initializer=my_init))

model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=512, activation='relu',
kernel_initializer=my_init))

model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=1024, activation='relu',
kernel_initializer=my_init))

model.add(keras.layers.Dropout(0.5))
model.add(keras.layers.Dense(units=1, activation='sigmoid',

kernel_initializer=my_init))
simple_sgd = keras.optimizers.SGD(lr=0.1)
model.compile(loss='binary_crossentropy',
optimizer=simple_sgd, metrics=['accuracy'])

return model

[ ]: def fit_QDAmodel(train_X, train_Y):
global random_state;
sampler = RandomUnderSampler(ratio={0: MIN , 1:MIN␣

↪→},random_state=random_state)
random_state= random_state +1
x_rs, y_rs = sampler.fit_sample(train_X, train_Y.ravel())
y_rs = np.array(y_rs)
x_rs = np.array(x_rs)
QDA = QuadraticDiscriminantAnalysis()
QDA.fit(x_rs,y_rs)
return QDA

[ ]: def fit_LGBmodel(train_X, train_Y,test_X,test_Y):
global random_state;
sampler = RandomUnderSampler(ratio={0: MIN , 1:MIN␣

↪→},random_state=random_state)
random_state= random_state +1
x_rs, y_rs = sampler.fit_sample(train_X, train_Y)
lgb_train = lgb.Dataset(x_rs, y_rs)
lgb_eval = lgb.Dataset(test_X, test_Y.flatten(), reference=lgb_train)
model = lgb.train(params_lgbm,

lgb_train,
num_boost_round=2000,
valid_sets=lgb_eval,
early_stopping_rounds=100,
verbose_eval=True)

return model
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[ ]: def fit_DARTmodel(train_X, train_Y,test_X,test_Y):
global random_state;
sampler = RandomUnderSampler(ratio={0: MIN , 1:MIN␣

↪→},random_state=random_state)
random_state= random_state +1
x_rs, y_rs = sampler.fit_sample(train_X, train_Y)
lgb_train = lgb.Dataset(x_rs, y_rs)
lgb_eval = lgb.Dataset(test_X, test_Y.flatten(), reference=lgb_train)
model = lgb.train(params_dart,

lgb_train,
num_boost_round=100,
valid_sets=lgb_eval,
early_stopping_rounds=10,
verbose_eval=True)

return model

[ ]: def fit_SVMmodel(train_X, train_Y):
global random_state;
sampler = RandomUnderSampler(ratio={0: MIN , 1:MIN␣

↪→},random_state=random_state)
random_state= random_state +1
x_rs, y_rs = sampler.fit_sample(train_X, train_Y.ravel())
y_rs = np.array(y_rs)
x_rs = np.array(x_rs)
SVM = SVC(probability = True)
SVM.fit(x_rs,y_rs)
return SVM

[ ]: def fit_LDAmodel(train_X, train_Y):
global random_state;
sampler = RandomUnderSampler(ratio={0: MIN , 1:MIN␣

↪→},random_state=random_state)
random_state= random_state +1
x_rs, y_rs = sampler.fit_sample(train_X, train_Y.ravel())
y_rs = np.array(y_rs)
x_rs = np.array(x_rs)
LDA = LinearDiscriminantAnalysis()
LDA.fit(x_rs,y_rs)
return LDA

[ ]: from imblearn.over_sampling import RandomOverSampler
def fit_nnmodel(train_X, train_Y,test_X,test_Y):

global random_state;
random_state= random_state +1
sampler = RandomUnderSampler(ratio={0: MIN , 1:MIN␣

↪→},random_state=random_state)
x_rs, y_rs = sampler.fit_sample(train_X, train_Y)
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model = get_nnmodel()
model.fit(x_rs,

y_rs,
batch_size=128,
shuffle=True,
validation_data=(test_X,test_Y),
epochs=10,
verbose=0)

return model

[ ]: from sklearn.ensemble import ExtraTreesClassifier
def fit_etmodel(train_X, train_Y):

global random_state;
sampler = RandomUnderSampler(ratio={0: MIN , 1:MIN␣

↪→},random_state=random_state)
random_state= random_state +1
x_rs, y_rs = sampler.fit_sample(train_X, train_Y)
etc = ExtraTreesClassifier(n_estimators=1000,max_depth=50)
etc.fit(train_X,train_Y)
return etc

[ ]: def fit_rfmodel(train_X, train_Y):
global random_state;
sampler = RandomUnderSampler(ratio={0: MIN , 1:MIN␣

↪→},random_state=random_state)
random_state= random_state +1
x_rs, y_rs = sampler.fit_sample(train_X, train_Y)
random_forest = RandomForestClassifier(n_estimators=1000,max_depth=30)
random_forest.fit(train_X,train_Y)
return random_forest

[ ]: n_members = 1
random_state= 0
members_rf = [fit_rfmodel(train_latents, train_Y) for _ in range(n_members)]

[ ]: predictions_rf = ensemble_predictions(members_rf,test_latents)

[ ]: n_members = 10
random_state= 0
members_nn = [fit_nnmodel(train_latents, train_Y,test_latents,test_Y) for _ in␣
↪→range(n_members)]

predictions_nn = ensemble_predictions(members_nn,test_latents)

[ ]: n_members = 10
random_state= 0
members_lda = [fit_LDAmodel(train_latents, train_Y) for _ in range(n_members)]
predictions_lda = ensemble_predictions(members_lda,test_latents)
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[ ]: n_members = 10
random_state= 0
members_qda = [fit_QDAmodel(train_latents, train_Y) for _ in range(n_members)]
predictions_qda = ensemble_predictions(members_qda,test_latents)

[ ]: n_members = 10
random_state = 0
members_dart =[fit_DARTmodel(train_latents, train_Y,test_latents,test_Y) for _␣
↪→in range(n_members)]

predictions_dart = ensemble_predictions(members_dart,test_latents)

[ ]: n_members = 10
random_state = 0
members_lgbm =[fit_LGBmodel(train_latents, train_Y,test_latents,test_Y) for _␣
↪→in range(n_members)]

predictions_lgbm = ensemble_predictions(members_lgbm,test_latents)

[ ]: n_members = 10
random_state= 0
members_svm = [fit_SVMmodel(train_latents, train_Y) for _ in range(n_members)]
predictions_svm= ensemble_predictions(members_svm,test_latents)

[ ]: n_members = 1
random_state= 0
members_etc = [fit_etmodel(train_latents, train_Y) for _ in range(n_members)]
predictions_etc = ensemble_predictions(members_etc,test_latents)

[ ]: all_models = []
all_models.append(members_lgbm)
all_models.append(members_dart)
all_models.append(members_qda)
all_models.append(members_rf)
all_models.append(members_nn)
all_models.append(members_lda)
all_models.append(members_svm)
all_models.append(members_etc)

[ ]: all_probs = []
all_probs.append(predictions_lgbm)
all_probs.append(predictions_dart)
all_probs.append(predictions_qda)
all_probs.append(predictions_rf)
all_probs.append(predictions_nn)
#ll_probs.append(predictions_lda)
all_probs.append(predictions_svm)
all_probs.append(predictions_etc)
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[ ]: # calculated a weighted sum of predictions
def weighted_sum(weights, yhats):

rows = list()
for j in range(yhats.shape[1]):

# enumerate values
row = list()
for k in range(yhats.shape[2]):

# enumerate members
value = 0.0
for i in range(yhats.shape[0]):

value += weights[i] * yhats[i,j,k]
row.append(value)

rows.append(row)
return array(rows)

# make an ensemble prediction for binary classification
def ensemble_predictions2(weights,all_probs):

# make predictions
#yhats = [model.predict(testX) for model in members]
yhats = all_probs
yhats = np.array(yhats)
# weighted sum across ensemble members
summed = np.tensordot(yhats, weights, axes=((0),(0)))
# argmax across classes
result = summed
return result

# evaluate a specific number of members in an ensemble
def evaluate_ensemble(weights,test_Y,all_probs):

# make prediction
yhat = ensemble_predictions2(weights,all_probs)
labels = (yhat > 0.5).astype(np.int)
fpr, tpr, _ = roc_curve(np.array(test_Y).flatten(), np.array(yhat).

↪→flatten(), pos_label=1)
roc_auc = auc(fpr, tpr)
# calculate accuracy
#r2(np.array(test_Y).flatten(),np.array(yhat).flatten())
return roc_auc

def normalize(weights):
# calculate l1 vector norm
result = norm(weights, 1)
# check for a vector of all zeros
if result == 0.0:

return weights
# return normalized vector (unit norm)
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return weights / result

# grid search weights
def grid_search(test_Y,all_probs):

# define weights to consider
w = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
best_score, best_weights = 0.0, None
# iterate all possible combinations (cartesian product)
for weights in product(w, repeat=len(all_probs)):

# skip if all weights are equal
if len(set(weights)) == 1:

continue
# hack, normalize weight vector
weights = normalize(weights)
# evaluate weights
score = evaluate_ensemble(weights,test_Y,all_probs)
if score > best_score:

best_score, best_weights = score, weights
print('>%s %.3f' % (best_weights, best_score))

return list(best_weights)

# grid search for coefficients in a weighted average ensemble for the blobs␣
↪→problem

from sklearn.datasets import make_blobs
from sklearn.metrics import accuracy_score
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense
from matplotlib import pyplot
from numpy import mean
from numpy import std
from numpy import array
from numpy import argmax
from numpy import tensordot
from numpy.linalg import norm
from itertools import product
# grid search weights
weights = grid_search(test_Y,all_probs)
score = evaluate_ensemble(weights,test_Y,all_probs)
print('Grid Search Weights: %s, Score: %.3f' % (weights, score))
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Optimization_EvaluateSmileModel (1)

September 6, 2020

[ ]: # Initialize drive
from google.colab import drive
drive.mount('/content/drive', force_remount=True)

[ ]: # Move to Google Drive
%cd drive
%cd 'My Drive'
%cd 'MSc Stats Dissertation'

[ ]: ## Install necessary additional libraries
!pip install deepsmiles
!pip install selfies==0.2.4
!pip install GPyOpt
!wget -c https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
!chmod +x Miniconda3-latest-Linux-x86_64.sh
!time bash ./Miniconda3-latest-Linux-x86_64.sh -b -f -p /usr/local
!time conda install -q -y -c conda-forge rdkit
!pip install guacamol

[ ]: ## Go to correct place in drive to allow us
## to import libraries
import sys
import os
sys.path.append('/usr/local/lib/python3.7/site-packages/')

[ ]: ## Import Necessary lIbraries
import numpy as np
import deepsmiles
import tensorflow as tf
import tensorflow as tf
import tensorflow.keras.backend as K
import tensorflow.keras as keras
import pandas as pd
import math
import tensorflow.keras.layers as layers
import rdkit
import Utils.generate_utils as generate_utils
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import time
import numpy as np
import matplotlib.pyplot as plt
from guacamol.distribution_learning_benchmark import ValidityBenchmark, \

UniquenessBenchmark, NoveltyBenchmark, KLDivBenchmark
from selfies import encoder, decoder
import GPyOpt
from GPyOpt.methods import BayesianOptimization
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
from numpy.random import multivariate_normal
import GPyOpt
from GPyOpt.methods import BayesianOptimization
import rdkit
import rdkit.Chem.Descriptors as Descriptors
import Utils.sascorer as sascorer

[ ]: ## Set to correct float type for consistency with training
tf.keras.backend.set_floatx('float32')

[ ]: ## Import necessary variational autoencoders
## and predictors
import GANS.renewed_smiles_vae as renewed_smiles_vae
import GANS.implicit_smile as implicit_smile
import GANS.proppred_deep_conv_smiles_vae as proppred_vae
import GANS.decoderTransformerLatent as decoderTransformerLatent
import GANS.ic50vae as ic50vae
import GANS.ic50pred as ic50pred

[ ]: ## Gaucamol to evaluate found smiles
from typing import List
from guacamol.distribution_matching_generator import␣
↪→DistributionMatchingGenerator

class MockGenerator(DistributionMatchingGenerator):
"""
Mock generator that returns pre-defined molecules,
possibly split in several calls
"""

def __init__(self, molecules: List[str]) -> None:
self.molecules = molecules
self.cursor = 0

def generate(self, number_samples: int) -> List[str]:
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end = self.cursor + number_samples

sampled_molecules = self.molecules[self.cursor:end]
self.cursor = end
return sampled_molecules

[ ]: ## Converter to convert SMILES to Deep SMILES
converter = deepsmiles.Converter(rings = True, branches = True)

[ ]: ## Import Necessary Data for training
SELFIES = False
DEEP = False
if SELFIES:

train_smiles_X = np.load('./vocab/train_selfies_X.npy',allow_pickle=True)
vocab =np.load('./vocab/selfies_vocab.npy',allow_pickle=True)
vocab_index = np.load('./vocab/selfies_vocab_index.npy',allow_pickle=True)

elif DEEP:
train_smiles_X = np.load('./vocab/train_deep_smiles_X.npy',allow_pickle=True)
vocab =np.load('./vocab/deep_vocab.npy',allow_pickle=True)
vocab_index = np.load('./vocab/deep_vocab_index.npy',allow_pickle=True)

else:
train_smiles_X = np.load('./vocab/train_smiles_X.npy',allow_pickle=True)
vocab =np.load('./vocab/vocab.npy',allow_pickle=True)
vocab_index = np.load('./vocab/vocab_index.npy',allow_pickle=True)

vocab = dict(vocab.ravel()[0])
vocab_index = dict(vocab_index.ravel()[0])

[ ]: ## ZINC data
if SELFIES:

zinc_train_smiles_X = np.load('./zinc_train_selfies_actual_X.
↪→npy',allow_pickle=True)
zinc_vocab =np.load('./vocab/zinc_selfies_vocab.npy',allow_pickle=True)
zinc_vocab_index = np.load('./vocab/zinc_selfies_vocab_index.

↪→npy',allow_pickle=True)
elif DEEP:

zinc_train_smiles_X = np.load('./vocab/zinc_train_deep_smiles_X.
↪→npy',allow_pickle=True)
zinc_vocab =np.load('./vocab/zinc_deep_vocab.npy',allow_pickle=True)
zinc_vocab_index = np.load('./vocab/zinc_deep_vocab_index.

↪→npy',allow_pickle=True)
else:

zinc_train_smiles_X = np.load('./vocab/zinc_train_smiles_X.
↪→npy',allow_pickle=True)
zinc_vocab =np.load('./vocab/zinc_vocab.npy',allow_pickle=True)
zinc_vocab_index = np.load('./vocab/zinc_vocab_index.npy',allow_pickle=True)

zinc_vocab = dict(zinc_vocab.ravel()[0])
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zinc_vocab_index = dict(zinc_vocab_index.ravel()[0])

[ ]: import re
## replace Br and Cl with single letters
def replace_halogens_inv(string):

br = re.compile('R')
cl = re.compile('L')
string = br.sub('Br', string)
string = cl.sub('Cl', string)
return string

[ ]: ## Splits the selfies <molecule> into a list of character strings.
def split_selfie(molecule):

return re.findall(r'\[.*?\]|\.', molecule)

[ ]: ## Integer encode SMILES and DeepSMILES
def integer_encode(smiles,vocab_dict):

smiles_enc = []
for char in smiles:

if char != '\n':
smiles_enc.append(vocab_dict[char])

return smiles_enc

[ ]: ## Integer encode SELFIES
def integer_encode_selfies(selfies,vocab_dict):

selfies_enc = []
try:

for char in selfies:
if char != '\n':
selfies_enc.append(vocab_dict[char])

except:
return None

return selfies_enc

[ ]: ## Get SMILES from vocabulary tokens
def get_smiles_from_tokens(tokens,vocab_index):

text_generated = []
for i in tokens:
text_generated.append(vocab_index[i])

eos_index = text_generated.index('<EOS>')
text_generated = text_generated[1:eos_index]
return ''.join(text_generated)

[ ]: ## Takes processed smiles/deep smiles and returns the tokenized
## versions of the smiles or deep semiles
## Note: Run replace halogens and replace percentages
## before running this method

4



def tokenize_smiles(smiles):
char_list = list(smiles)
tokenized= []
tokenized.append('<BOS>')
i = 0
while i < len(char_list):
char = char_list[i]
tokenized.append(char)
i= i+1

tokenized.append('<EOS>')
return tokenized

[ ]: import re
## replace Br and Cl with single letters
def replace_halogens(string):

br = re.compile('Br')
cl = re.compile('Cl')
string = br.sub('R', string)
string = cl.sub('L', string)
return string

[ ]: ## Takes processed selfies smiles and returns the tokenized
## versions of the selfies
def tokenize_selfies(selfies):

char_list = split_selfie(selfies)
tokenized= []
tokenized.append('<BOS>')
i = 0
while i < len(char_list):
char = char_list[i]
tokenized.append(char)
i = i+1

tokenized.append('<EOS>')
return tokenized

[ ]: ## Tokenize Zinc data set
smile_pair_tokens = []
if not SELFIES:

index = np.where(zinc_train_smiles_X == 1)
t = np.split(zinc_train_smiles_X,index[0].tolist())
t= t[1:]

else:
t = zinc_train_smiles_X

if not SELFIES:
for smiles in t:
smiles = get_smiles_from_tokens(smiles,zinc_vocab_index)
if SELFIES:
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smile_pair_tokens.append(tokenize_selfies(smiles))
else:

smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(smiles))

smile_pair_tokens = np.array(smile_pair_tokens)
else:

smile_pair_tokens = zinc_train_smiles_X

smiles_ordered = []
for smiles in smile_pair_tokens:

if SELFIES:
smiles = smiles
smiles_ordered.append(smiles)

else:
smiles_ordered.append(integer_encode(smiles,vocab))

smiles_ordered = np.array(smiles_ordered)
zinc_train_smiles_X = smiles_ordered

[ ]: ## Ensure that our tokenization works and that we do not continue
## with NULL data
zinc_train_smiles_X =[v for i,v in enumerate(zinc_train_smiles_X) if v != None]
print(len(zinc_train_smiles_X))

[ ]: ## Import sas, qed, and logp data for ZINC
if SELFIES:

zinc_sas = np.load('./vocab/selfies_zinc_sas.npy',allow_pickle=True)
zinc_qed =np.load('./vocab/selfies_zinc_qeds.npy',allow_pickle=True)
zinc_logp =np.load('./vocab/selfies_zinc_logp.npy',allow_pickle=True)

else:
zinc_sas = np.load('./vocab/zinc_sas.npy',allow_pickle=True)
zinc_qed =np.load('./vocab/zinc_qeds.npy',allow_pickle=True)
zinc_logp =np.load('./vocab/zinc_logp.npy',allow_pickle=True)

[ ]: ## Import sas, qed, and logp data for ChEMBL
sas = np.load('./vocab/sas.npy',allow_pickle=True)
qed =np.load('./vocab/qed.npy',allow_pickle=True)
logp =np.load('./vocab/logp.npy',allow_pickle=True)

[ ]: ## Import IC50 and transcriptomic data
gene_expressions = np.load('gene_expressions.npy')
ic50 = np.load('ic50.npy')
smiles_pairs = np.load('smiles_pairs.npy')
sites = np.load('sites.npy')
cell_lines = np.load('cell_lines.npy')
histologies = np.load('histologies.npy')
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[ ]: ## Scale data as necessary
from sklearn.preprocessing import MinMaxScaler
ic50_scaler = MinMaxScaler()
ic50_scaler.fit(ic50.reshape(-1,1))
ic50 = ic50_scaler.transform(ic50.reshape(-1,1))
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaler.fit(gene_expressions)
gene_expressions = scaler.transform(gene_expressions)

[ ]: ## Get IC50 data for the 'TE-12' cell line
sarcoma_gene_expressions =[]
sarcoma_smiles = []
sarcoma_ic50s = []
indices = []
index = 0
for i in histologies:

if cell_lines[index] =='TE-12':
indices.append(index)

index+=1
real_sampled_smiles = np.array(smiles_pairs)[indices]
sampled_smiles = np.array(smiles_pairs)[indices]
sampled_ic50 = ic50[indices]
sampled_gene_expressions = gene_expressions[indices]

indices = []
index = 0
for i in histologies:

if cell_lines[index] =='TE-12':
indices.append(index)

index+=1
real_sampled_smiles = np.array(smiles_pairs)[indices]
sampled_smiles = np.array(smiles_pairs)[indices]
sampled_ic50 = ic50[indices]
sampled_gene_expressions = gene_expressions[indices]

smiles_pairs_enc = []
for smiles in sampled_smiles:

if SELFIES:
smiles_pairs_enc.append(encoder(smiles))

if SELFIES:
sampled_smiles = np.array(smiles_pairs_enc)

print(len(sampled_smiles))
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[ ]: ## Get IC50 data for the sarcoma cells
indices = []
index = 0
for i in histologies:

if i == 'sarcoma':
indices.append(index)

index+=1
sarcoma_cell_lines = cell_lines[indices]
sarcoma_smiles = np.array(smiles_pairs)[indices]
sarcoma_ic50s = ic50[indices]
sarcoma_gene_expressions = gene_expressions[indices]

[ ]: ## Get sarcoma gene expression data
new_sarcoma_gene_expressions = []
new_cell_lines = []
for i in range(len(sarcoma_cell_lines)):

if cell_lines[i] not in new_cell_lines:
new_cell_lines.append(cell_lines[i])
new_sarcoma_gene_expressions.append(sarcoma_gene_expressions[i])

print(len(new_sarcoma_gene_expressions))
sarcoma_gene_expressions = new_sarcoma_gene_expressions

[ ]: ## Neccesary CONSTANTS
BATCH_SIZE = 256
VOCAB_SIZE = len(vocab_index)
EPOCHS = 10
LEARNING_RATE = 1e-4
if SELFIES or DEEP:

PAD_SIZE = 250
else:

PAD_SIZE = 160 ## Maximum size of a SMILE (100 + BOS, EOS)
print('HERE')

MAX_LEN = PAD_SIZE
DROP_OUT= 0.2
EMBEDDING_DIM = 192 ## Embedding dim of the characters
HIDDEN_DIM = 256
DROPOUT = 0.2
TRAIN = False
LATENT_DIM = 64
IMPLICIT = False
PROPPRED = False
TRANSFORMER_DECODE = False
IC50 = True
SMALL_LATENT = False
if SMALL_LATENT:

LATENT_DIM = 32
print(MAX_LEN)
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[ ]: ## Process ZINC data
t=zinc_train_smiles_X
t = tf.keras.preprocessing.sequence.pad_sequences(t,maxlen =␣
↪→PAD_SIZE,padding='post')

NUM_BATCHES = math.floor(len(t)/BATCH_SIZE )

NUM_TRAIN_BATCH = math.floor(NUM_BATCHES*0.99)
NUM_TEST_BATCH = math.floor(NUM_BATCHES*(0.01))

zinc_test_X =t
zinc_test_sas = zinc_sas
zinc_test_qed = zinc_qed
zinc_test_logp = zinc_logp

[ ]: ## Process ChEMBL data
index = np.where(train_smiles_X == 1)
t = np.split(train_smiles_X,index[0].tolist())
t= t[1:]
t = tf.keras.preprocessing.sequence.pad_sequences(t,maxlen =␣
↪→PAD_SIZE,padding='post')

NUM_BATCHES = math.floor(len(t)/BATCH_SIZE )

[ ]: NUM_TRAIN_BATCH = math.floor(NUM_BATCHES*0.99)
NUM_TEST_BATCH = math.floor(NUM_BATCHES*(0.01))

[ ]: test_X = t[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

train_X = t[:NUM_TRAIN_BATCH*BATCH_SIZE]

[ ]: test_sas = sas[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

train_sas = sas[:NUM_TRAIN_BATCH*BATCH_SIZE]

test_qed = qed[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

train_qed = qed[:NUM_TRAIN_BATCH*BATCH_SIZE]

test_logp = logp[NUM_TRAIN_BATCH*BATCH_SIZE:
↪→(NUM_TEST_BATCH+NUM_TRAIN_BATCH)*BATCH_SIZE]

train_logp = logp[:NUM_TRAIN_BATCH*BATCH_SIZE]

[ ]: ## Create transformer
transformer = decoderTransformerLatent.Transformer(batch_size = BATCH_SIZE,␣
↪→embedding_dim=384,embedding_dropout =DROP_OUT,max_len=MAX_LEN,

num_heads = 6, num_layers =␣
↪→6,
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vocab_size = VOCAB_SIZE,attention_dropout␣
↪→=DROP_OUT,d_hid=EMBEDDING_DIM *4,use_one_embedding_dropout=False)

[ ]: ## Load in necessary Transformer weights
if IMPLICIT and IC50:

print('NOT TRAINED YET')
elif IMPLICIT:

if DEEP:
transformer.load_weights('ivae_decoding_deep_latent')

elif SELFIES:
transformer.load_weights('ivae_decoding_selfies_latent')

else:
transformer.load_weights('ivae_decoding_smiles_latent')
print('HERE')

elif IC50:
if DEEP:
transformer.load_weights('ic50g_decoding_deep_latent3')

elif SELFIES:
transformer.load_weights('ic50g_decoding_selfies_latent3')

else:
transformer.load_weights('amazing_ic50g_decoding_smiles_latent3')
print('IC50G NORMAL')

else:
if DEEP:
transformer.load_weights('decoding_deep_smiles_latent3')

elif SELFIES:
transformer.load_weights('decoding_selfies_latent3')

else:
transformer.load_weights('decoding_smiles_latent3')
print('NORMAL')

[ ]: # Create necessary VAE
if IMPLICIT:

smile_vae = implicit_smile.SMILE_IMPLICIT_VAE(vocab_size␣
↪→=VOCAB_SIZE,embedding_dim =EMBEDDING_DIM,

max_len =MAX_LEN, latent_dim=LATENT_DIM, hidden_dim= HIDDEN_DIM,
recurrent_dropout =0.2,
dropout_rate=0.2,
epsilon_std = 1.0)

print('HERE')
else:

smile_vae = renewed_smiles_vae.SMILE_VAE(vocab_size=␣
↪→VOCAB_SIZE,embedding_dim=EMBEDDING_DIM, max_len= MAX_LEN,

latent_dim = LATENT_DIM, recurrent_dropout =␣
↪→DROP_OUT,dropout_rate= DROP_OUT)
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[ ]: ## Load in necessary VAE weights
if IMPLICIT:

if DEEP:
print('IMPLICIT DEEP')
smile_vae.load_weights('deep_smiles_ivae_weights')

elif SELFIES:
print('IMPLICIT SELFIES')
smile_vae.load_weights('selfies_ivae_weights')

else:
print('IMPLICIT NORMAL')
smile_vae.load_weights('smiles_ivae_weights')

elif not IC50:
if SMALL_LATENT:

if DEEP:
print('SMALL DEEP')
smile_vae.load_weights('deep32_conv_vae_weights2')

elif SELFIES:
print('SMALL SELFIES')
smile_vae.load_weights('selfies32_conv_vae_weights2')

else:
print('SMALL SMILES')
smile_vae.load_weights('smiles32_conv_vae_weights2')

else:
if DEEP:

print('DEEP')
smile_vae.load_weights('deep_conv_vae_weights2')

elif SELFIES:
print('SELFIES')
smile_vae.load_weights('selfies_conv_vae_weights2')

else:
print('NORMAL')
smile_vae.load_weights('smiles_conv_vae_weights2')

if IC50:
print('HERE')
smile_vae = ic50vae.SMILE_VAE(vocab_size=␣

↪→VOCAB_SIZE,embedding_dim=EMBEDDING_DIM, max_len= MAX_LEN,
latent_dim = LATENT_DIM, recurrent_dropout =␣

↪→DROP_OUT,dropout_rate= DROP_OUT)
if DEEP:
print('IC50 DEEP')
smile_vae.load_weights('ic50g_deep_conv_vae_weights')

elif SELFIES:
print('IC50 SELFIES')
smile_vae.load_weights('ic50g_selfies_conv_vae_weights')

else:
print('IC50 NORMAL')
smile_vae.load_weights('amazing_ic50g_smiles_conv_vae_weights')
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[ ]: ## converts smiles to deep smiles
def get_smiles_from_selfies(deep_list):

smiles = []
for deep in deep_list:

try:
smile = decoder(deep)

except:
smile = None

smiles.append(smile)
return smiles

[ ]: ## converts smiles to deep smiles
def get_smiles_from_deep(deep_list):

smiles = []
print("DeepSMILES version: %s" % deepsmiles.__version__)
converter = deepsmiles.Converter(rings = True, branches = True)
print(converter) # record the options used
i = 0
for deep in deep_list:
print(deep)
try:

smile = converter.decode(deep)
except:

smile = None
#print("DecodeError! Error message was '%s'" % e.message)
continue

if (i%100000 == 0 ):
print(i)

i+= 1
smiles.append(smile)

return smiles

[ ]: def get_smiles_from_logits_prob(logits,vocab_index, temperature =1.0):
logits = logits/temperature
text_generated = []
for i in logits[0]:
j = tf.random.categorical(tf.reshape(i,[1,len(i)]), num_samples=1)[0][0].

↪→numpy()
text_generated.append(vocab_index[j])

eos_index = text_generated.index('<EOS>')
text_generated = text_generated[1:eos_index]
return (''.join(text_generated))
#print(''.join(text_generated))

[ ]: ## return smile string from logits
def get_smiles_from_logits(logits,vocab_index):

soft = tf.nn.softmax(logits, axis = -1)
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prediction = tf.argmax(soft, -1)
text_generated = []
for i in prediction[0]:
text_generated.append(vocab_index[i.numpy()])

if '<EOS>' in text_generated:
eos_index = text_generated.index('<EOS>')
text_generated = text_generated[1:eos_index]

else:
text_generated = []

return (''.join(text_generated))
#print(''.join(text_generated))

[ ]: ## return smile string from logits
def get_ismiles_from_logits(logits,vocab_index):

soft = tf.nn.softmax(logits, axis = -1)
prediction = tf.argmax(soft, -1)
text_generated = []
for i in prediction[0]:
text_generated.append(vocab_index[i.numpy()])

eos_index = text_generated.index('<EOS>')
text_generated = text_generated[1:eos_index]
return (''.join(text_generated))
#print(''.join(text_generated))

[ ]: ## return smile string from logits
def get_smiles_from_logits_topp(logits,vocab_index,k =5):

text_generated = []
for log in logits[0]:
## sort predictions
log = np.array(log)
ind = np.array(log).argsort()[::-1][:(len(log))] ## Sort in descending␣

↪→order
sorted_prob = tf.nn.softmax(logits[ind])
## Get all the indicies that are less than the total allowed probability
cumprob = np.cumsum(sorted_prob)
ind_stay = cumprob < p
if (len(ind_stay) <= 1):

predicted_id = ind[0]
else:

sorted_logits = logits[ind]
# using a categorical distribution to predict the character returned by␣

↪→the model
predicted_index = tf.random.categorical(tf.

↪→reshape(sorted_logits,[1,len(sorted_logits)]), num_samples=1).numpy()
predicted_id = ind[predicted_index][0][0]

# using a categorical distribution to predict the character returned by the␣
↪→model
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#predicted_id = tf.random.categorical(tf.
↪→reshape(predictions,[1,len(predictions)]), num_samples=1)[0][0].numpy()

text_generated.append(vocab_index[ind[predicted_id]])
eos_index = text_generated.index('<EOS>')
text_generated = text_generated[:eos_index]
return (''.join(text_generated))
#print(''.join(text_generated))

[ ]: ## return smile string from logits
def get_smiles_from_logits_topk(logits,vocab_index,k =5):

#soft = tf.nn.softmax(logits, axis = -1)
#prediction = tf.argmax(soft, -1)
text_generated = []
for log in logits[0]:
## sort predictions
log = np.array(log)
ind = np.array(log).argsort()[::-1][:(len(log))] ## Sort in descending␣

↪→order
## Get sorted predictions and the top k predictions
log = log[ind]
log = log[:k]
# using a categorical distribution to predict the character returned by the␣

↪→model
predicted_id = tf.random.categorical(tf.

↪→reshape(predictions,[1,len(predictions)]), num_samples=1)[0][0].numpy()
text_generated.append(vocab_index[ind[predicted_id]])

eos_index = text_generated.index('<EOS>')
text_generated = text_generated[:eos_index]
return (''.join(text_generated))
#print(''.join(text_generated))

[ ]: def get_smiles_from_tokens(tokens,vocab_index):
text_generated = []
for i in tokens:
text_generated.append(vocab_index[i])

eos_index = text_generated.index('<EOS>')
text_generated = text_generated[1:eos_index]
return ''.join(text_generated)

[ ]: import re
## replace R and L with with Br and Cl
def replace_halogens_inv(string):

br = re.compile('R')
cl = re.compile('L')
string = br.sub('Br', string)
string = cl.sub('Cl', string)
return string
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[ ]: ## Tokenize and process ChEMBL data
sarcoma_smiles = set(sarcoma_smiles)
smile_pair_tokens = []
for smiles in sarcoma_smiles:

if SELFIES:
smile_pair_tokens.append(tokenize_selfies(encoder(smiles)))

elif DEEP:
smiles = converter.encode(smiles)
smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(smiles))

else:
smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(smiles))

smile_pair_tokens = np.array(smile_pair_tokens)

smiles_ordered = []
for smiles in smile_pair_tokens:

if SELFIES:
smiles_ordered.append(integer_encode_selfies(smiles,vocab))

else:
smiles_ordered.append(integer_encode(smiles,vocab))

smiles_ordered = np.array(smiles_ordered)

smiles_ordered = tf.keras.preprocessing.sequence.
↪→pad_sequences(smiles_ordered,maxlen = PAD_SIZE,padding='post')

[ ]: ## Process Sarcoma data
sarcoma_tok_smiles = np.array(smiles_ordered)
sarcoma_smiles_z =[]
for smiles in sarcoma_tok_smiles:

smiles = smiles.reshape(1,smiles.shape[0])[:,:]
if IMPLICIT:
eps = tf.convert_to_tensor(np.random.normal(size=(smiles.shape[0],␣

↪→LATENT_DIM)),dtype = tf.float32)
z_mean = smile_vae.encoder(smiles,eps)[1]

else:
h, z_mean,z_log_var = smile_vae.encoder(np.array(smiles[:]).

↪→reshape(1,MAX_LEN,))
sarcoma_smiles_z.append(z_mean)

[ ]: ## Process TE-12 cell line data
smile_pair_tokens = []
for smiles in sampled_smiles:

if SELFIES:
smile_pair_tokens.append(tokenize_selfies(smiles))

elif DEEP:
smiles = converter.encode(smiles)
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smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(smiles))

else:
smiles = replace_halogens(smiles)
smile_pair_tokens.append(tokenize_smiles(smiles))

smile_pair_tokens = np.array(smile_pair_tokens)

smiles_ordered = []
for smiles in smile_pair_tokens:

if SELFIES:
smiles_ordered.append(integer_encode_selfies(smiles,vocab))

else:
smiles_ordered.append(integer_encode(smiles,vocab))

smiles_ordered = np.array(smiles_ordered)

smiles_ordered = tf.keras.preprocessing.sequence.
↪→pad_sequences(smiles_ordered,maxlen = PAD_SIZE,padding='post')

[ ]: ## Get Latnet representations of select TE-12 data
sampled_smiles =[]
for smiles in smiles_ordered:

smiles = smiles.reshape(1,smiles.shape[0])[:,:]
if IMPLICIT:
eps = tf.convert_to_tensor(np.random.normal(size=(smiles.shape[0],␣

↪→LATENT_DIM)),dtype = tf.float32)
z_mean = smile_vae.encoder(smiles,eps)[1]

else:
h, z_mean,z_log_var = smile_vae.encoder(np.array(smiles[:]).

↪→reshape(1,MAX_LEN,))
sampled_smiles.append(z_mean)

sampled_smiles = np.array(sampled_smiles)
sampled_smiles = sampled_smiles.reshape((-1,LATENT_DIM))
print(sampled_smiles.shape)

[ ]: ## Process data as necessary for testing the efficacy of different models
ZINC = True
TRANSFORMER_DECODE = True
current_testing_smiles = smiles_ordered
if ZINC:

current_testing_smiles = zinc_test_X[:1000]
else:

current_testing_smiles = test_X[:1000]

test_smiles = []
index = 0
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for test_smile in current_testing_smiles:
if index % 10 == 0:
print(index)

test_s = test_smile.reshape(1,test_smile.shape[0])[:,:]
if IMPLICIT:
eps = tf.convert_to_tensor(np.random.normal(size=(test_s.shape[0],␣

↪→LATENT_DIM)),dtype = tf.float32)
test_s_x = smile_vae.encoder(test_s,eps)[1]
if TRANSFORMER_DECODE == True:

zeros = np.zeros((BATCH_SIZE-1,LATENT_DIM))
test_s_x = np.concatenate((test_s_x,zeros))
test_s_x = transformer(test_s_x)

else:
test_s_x = smile_vae(test_s)[0]

test_smiles.append(get_smiles_from_logits(test_s_x,vocab_index))
else:
test_s_x = smile_vae.encoder(test_s)[1]
if TRANSFORMER_DECODE == True:

zeros = np.zeros((BATCH_SIZE-1,LATENT_DIM))
test_s_x = np.concatenate((test_s_x,zeros))
test_s_x = tf.reshape(transformer(test_s_x)[0], [1,MAX_LEN,VOCAB_SIZE])

else:
test_s_x = smile_vae(test_s)[2]

test_smiles.append(get_smiles_from_logits(test_s_x,vocab_index))
index+=1

if DEEP:
print('HERE')
actual_smiles = get_smiles_from_deep(test_smiles)

elif SELFIES:
actual_smiles = get_smiles_from_selfies(test_smiles)

else:
actual_smiles = test_smiles

[ ]: ## Process back to get original SMILES
correct_smiles =[v for i,v in enumerate(actual_smiles) if v != None and v!= -1]
testing_set = [get_smiles_from_tokens(v,vocab_index) for i,v in␣
↪→enumerate(current_testing_smiles)]

if DEEP:
testing_set = get_smiles_from_deep(testing_set)

elif SELFIES:
testing_set = get_smiles_from_selfies(testing_set)

if not SELFIES:
for i in range(len(correct_smiles)):
correct_smiles[i] = replace_halogens_inv(correct_smiles[i])
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[ ]: ## Check the number of syntaxically correct smiles
num_incorrect = 0
for i in correct_smiles:

try:
m = rdkit.Chem.MolFromSmiles(i,sanitize=False)
if m is None:

num_incorrect+=1
except:

continue
print(1-(num_incorrect/len(current_testing_smiles)))

[ ]: NUM_SAMPLES = len(correct_smiles)

### ASSESS NUMBER OF CORRECT SMILES
generator = MockGenerator(correct_smiles)
benchmark = ValidityBenchmark(number_samples=NUM_SAMPLES)
print("Percentage of Chemically Reasonable Generated SMILES: " + \

"{:.3f}".format(benchmark.assess_model(generator).score))

## Asess generated strings
generator = MockGenerator(correct_smiles)
print(len(testing_set))
#training_set = molecules['Smiles'].tolist()

### Assess the number of unique SMILES generated
benchmark = UniquenessBenchmark(number_samples=NUM_SAMPLES)
print("The model's uniqueness score is: " + \

"{:.3f}".format(benchmark.assess_model(generator).score))

### Assess the novelty of the SMILES generated
#generator = MockGenerator(['CCOCC', 'O(CC)CC', 'C=CC=C', 'CC'])
generator = MockGenerator(correct_smiles)

benchmark = NoveltyBenchmark(number_samples=NUM_SAMPLES,␣
↪→training_set=testing_set)

#benchmark = NoveltyBenchmark(number_samples=NUM_SAMPLES, training_set=['CO',␣
↪→'CC'])

print("The model's novelty score is: " + \
"{:.3f}".format(benchmark.assess_model(generator).score))

## Assess the KL-Divergence of the SMILES generated
#benchmark = KLDivBenchmark(number_samples=NUM_SAMPLES,␣
↪→training_set=testing_set)

generator = MockGenerator(correct_smiles)
benchmark = KLDivBenchmark(number_samples=NUM_SAMPLES, training_set=testing_set)
result = benchmark.assess_model(generator)
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print("The model's KL Divergence score is: " + \
"{:.3f}".format(result.score))

[ ]: ### Perturb the latent space
def perturb_z( z, noise_norm, constant_norm=False):

if noise_norm > 0.0:
noise_vec = np.random.normal(0, 1, size=z.shape)
noise_vec = noise_vec / np.linalg.norm(noise_vec)
if constant_norm:

return z + (noise_norm * noise_vec)
else:

noise_amp = np.random.uniform(
0, noise_norm, size=(z.shape[0], 1))

return z + (noise_amp * noise_vec)
else:

return z

[ ]: ## Get many SMILES from a given SMILES and VAE
def smile_to_smiles(smile_vae,

smile,
vocab_index,
noise_norm =0.1,
decode_attempts=250):

h, z_mean,z_log_var = smile_vae.encoder(tf.reshape(smile,[1,MAX_LEN]))
zs = []
for i in range(decode_attempts):
zs.append(perturb_z(z_mean,2.0))

zs = np.array(zs)
zs = zs.reshape((zs.shape[0],zs.shape[-1]))
#print(zs.shape)
x_decoded = []
#for z in zs:
x_decoded = smile_vae.decoder(zs)
decoded_smiles = []
for x_dec in x_decoded:
decoded_smiles.append(get_smiles_from_logits(tf.

↪→reshape(x_dec,[1,MAX_LEN,VOCAB_SIZE]),vocab_index))
actual_smiles = decoded_smiles
if DEEP == True:
actual_smiles = get_smiles_from_deep(decoded_smiles)
correct_smiles =[v for i,v in enumerate(actual_smiles) if v != None]
correct_smiles =[replace_halogens_inv(v) for i,v in␣

↪→enumerate(actual_smiles) if v != None]
elif SELFIES:
actual_smiles = get_smiles_from_selfies(decoded_smiles)
correct_smiles =[v for i,v in enumerate(actual_smiles) if v != None]

else:
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correct_smiles =[replace_halogens_inv(v) for i,v in␣
↪→enumerate(actual_smiles) if v != None]
num_samples = len(correct_smiles)
generator = MockGenerator(correct_smiles)
benchmark = ValidityBenchmark(number_samples=num_samples)
print("Percentage of correctly Generated SMILES: " + \
"{:.3f}".format(benchmark.assess_model(generator).score))

generator = MockGenerator(correct_smiles)
benchmark = UniquenessBenchmark(number_samples=num_samples)
print("The model's uniqueness score is: " + \
"{:.3f}".format(benchmark.assess_model(generator).score))

return correct_smiles

[ ]: decoded_test_samples = []
test_samples = test_X[:4000]
for smiles in test_samples:

if SELFIES:
smiles = get_smiles_from_tokens(smiles,vocab_index)
smiles = decoder(smiles)

elif DEEP:
smiles = get_smiles_from_tokens(smiles,vocab_index)
smiles = replace_halogens_inv(smiles)
smiles = converter.decode(smiles)

else:
smiles = get_smiles_from_tokens(smiles,vocab_index)
smiles = replace_halogens_inv(smiles)

decoded_test_samples.append(smiles)

[ ]: ## Get fingerpreints of decoded test samples
ms = [rdkit.Chem.MolFromSmiles(x) for x in decoded_test_samples]
indexs = [i for i,v in enumerate(ms) if v != None]
ms =[v for i,v in enumerate(ms) if v != None]
fps = [rdkit.Chem.RDKFingerprint(x) for x in ms]

[ ]: ## Project test samples to latent space and perform
## PCA to get the distribution of Tanimoto similarities
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.decomposition import KernelPCA
NUM_SAMPLED = len(fps)
sampled_points =[]
for i in indexs:
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if IMPLICIT:
t = smile_vae(test_X[i][:].reshape(1,MAX_LEN))[2]

else:
t = smile_vae(test_X[i][:].reshape(1,MAX_LEN))[1]

sampled_points.append(t)
sampled_points = np.array(sampled_points).reshape(NUM_SAMPLED,LATENT_DIM)
PCA = KernelPCA(n_components=2, kernel="linear")
data_transformed = PCA.fit_transform(sampled_points)
from sklearn.preprocessing import MinMaxScaler
scaler1 = MinMaxScaler()
scaler1.fit(np.array(data_transformed[:,0]).reshape(-1,1))
scaler2 = MinMaxScaler()
scaler2.fit(np.array(data_transformed[:,1]).reshape(-1,1))

plot = {0: [scaler1.transform(x[0].reshape(1,-1))[0][0] for x in␣
↪→data_transformed],

1: [scaler2.transform(x[1].reshape(1,-1))[0][0] for x in␣
↪→data_transformed]}

[ ]: ## Select the point on which to base similarity calculations
CURRENT_INDEX = np.argmin(plot[0])
if SELFIES:

CURRENT_SMILE = decoder(get_smiles_from_tokens(test_X[:
↪→4000][indexs[CURRENT_INDEX]],vocab_index))

elif DEEP:
CURRENT_SMILE = converter.decode(get_smiles_from_tokens(test_X[:

↪→4000][indexs[CURRENT_INDEX]],vocab_index))
else:

CURRENT_SMILE = get_smiles_from_tokens(test_X[:
↪→4000][indexs[CURRENT_INDEX]],vocab_index)

[ ]: ## Calculate similarites
from rdkit import DataStructs
ts = []
for idx in range(len(fps)):

ts.append(DataStructs.FingerprintSimilarity(fps[CURRENT_INDEX],fps[idx]))

[ ]: ## Plot Tanimoto similiarites as a hexplot
def scatter_hist(x, y, colors, ax, ax_histx, ax_histy):

# no labels
ax_histx.tick_params(axis="x", labelbottom=False)
ax_histy.tick_params(axis="y", labelleft=False)

# the hexbin plot:
ax.hexbin(x,y,gridsize= 50,C =colors, reduce_C_function=np.mean)

ax.annotate(CURRENT_SMILE,
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(plot[0][CURRENT_INDEX]+.05, plot[1][CURRENT_INDEX]-.
↪→05),color='red',fontsize=12 )

# now determine nice limits by hand:
#binwidth = 0.000025
#xymax = max(np.max(np.abs(x)), np.max(np.abs(y)))
#lim = (int(xymax/binwidth) + 1) * binwidth

bins = np.arange(0, 1, 0.01)
ax_histx.hist(x, bins=bins)
bins = np.arange(0, 1, 0.01)
ax_histy.hist(y, bins=bins, orientation='horizontal')

[ ]: # definitions for the axes
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
spacing = 0.005
import matplotlib
matplotlib.rc('font', size=16)
ticks=np.arange(0,1.01,.1)

rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom + height + spacing, width, 0.2]
rect_histy = [left + width + spacing, bottom, 0.2, height]
print(rect_histy)
# start with a square Figure
fig = plt.figure(figsize=(12,12))
ax = fig.add_axes(rect_scatter)
cbaxes = fig.add_axes([1.00, 0.1, 0.03, 0.8])

ax_histx = fig.add_axes(rect_histx, sharex=ax)
ax_histy = fig.add_axes(rect_histy, sharey=ax)

scatter_hist(plot[0], plot[1],ts, ax, ax_histx, ax_histy)
#plt.xlim(-3, 3)
#plt.ylim(-1, 10)
norm = matplotlib.colors.Normalize(vmin=0,vmax=1 )
bar = fig.colorbar(cm.ScalarMappable(norm=norm), ax=ax,cax =cbaxes,)
bar.set_label('Tanimoto Similarity')
bar.ax.set_yticklabels(['0.0','0.2','0.4','0.6','0.8','1.0'])
#plt.axis('square')
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[ ]: fig.savefig("./FINAL_FIGURES/Tanimoto_IMPLICIT_DEEP_CHEMBL_TEST_4000",␣
↪→bbox_inches='tight')

[ ]: ## Project test samples to latent space and perform
## PCA to get the distribution of LOGP, QED, and SA Scores for ChHEMBL
from sklearn.decomposition import KernelPCA
NUM_SAMPLED = 4000
sampled_index = np.random.choice(len(test_X), NUM_SAMPLED+100 , replace=False)
sampled_points =[]
qeds = []
sass = []
logps = []
index = 0
while len(sampled_points) != NUM_SAMPLED:

i = sampled_index[index]
index+=1
smiles = test_X[i][:].reshape(1,MAX_LEN)
eps = tf.convert_to_tensor(np.random.normal(size=(smiles.shape[0],␣

↪→LATENT_DIM)),dtype = tf.float32)
if IMPLICIT:
t = smile_vae.encoder(smiles,eps)[1]

else:
t = smile_vae.encoder(smiles)[1]

if SELFIES:
smiles = get_smiles_from_tokens(smiles[0],vocab_index)
try:

smiles = decoder(smiles)
except:

print('EXCEPT')
continue

elif DEEP:
smiles = get_smiles_from_tokens(smiles[0],vocab_index)
smiles = replace_halogens_inv(smiles)
smiles = converter.decode(smiles)

else:
smiles = get_smiles_from_tokens(smiles[0],vocab_index)
smiles = replace_halogens_inv(smiles)

if len(sampled_points)% 100 == 0:
print(len(sampled_points))

sampled_points.append(t)
m = rdkit.Chem.MolFromSmiles(smiles)
sass.append(sascorer.calculateScore(m))
qeds.append(rdkit.Chem.QED.qed(m))
logps.append(Descriptors.MolLogP(m))

sampled_points = np.array(sampled_points).reshape(NUM_SAMPLED,LATENT_DIM)
PCA = KernelPCA(n_components=2, kernel="linear")
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data_transformed = PCA.fit_transform(sampled_points)
from sklearn.preprocessing import MinMaxScaler
scaler1 = MinMaxScaler()
scaler1.fit(np.array(data_transformed[:,0]).reshape(-1,1))
scaler2 = MinMaxScaler()
scaler2.fit(np.array(data_transformed[:,1]).reshape(-1,1))

[ ]: def scatter_hist(x, y, colors, ax, ax_histx, ax_histy):
# no labels
ax_histx.tick_params(axis="x", labelbottom=False)
ax_histy.tick_params(axis="y", labelleft=False)

# the hexbin plot:
ax.hexbin(x,y,gridsize=50,C =colors, reduce_C_function=np.mean)

bins = np.arange(0, 1, 0.01)
ax_histx.hist(x, bins=bins)
bins = np.arange(0, 1, 0.01)
ax_histy.hist(y, bins=bins, orientation='horizontal')

[ ]: SASS = False
logP = True

[ ]: plot = {0: [scaler1.transform(x[0].reshape(1,-1))[0][0] for x in␣
↪→data_transformed],

1: [scaler2.transform(x[1].reshape(1,-1))[0][0] for x in␣
↪→data_transformed]}

[ ]: # definitions for the axes
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
spacing = 0.005
import matplotlib
if SASS:

ticks=np.arange(1,10,1)
norm = matplotlib.colors.Normalize(vmin=1,vmax=10 )

elif logP:
ticks=np.arange(-9,13+1,2)
norm = matplotlib.colors.Normalize(vmin=-9,vmax=13 )

else:
ticks=np.arange(0,1.2,.2)
norm = matplotlib.colors.Normalize(vmin=0,vmax= 1)

matplotlib.rc('font', size=20)
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rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom + height + spacing, width, 0.2]
rect_histy = [left + width + spacing, bottom, 0.2, height]
print(rect_histy)
# start with a square Figure
fig = plt.figure(figsize=(12,12))
ax = fig.add_axes(rect_scatter)
cbaxes = fig.add_axes([1.00, 0.1, 0.03, 0.8])

ax_histx = fig.add_axes(rect_histx, sharex=ax)
ax_histy = fig.add_axes(rect_histy, sharey=ax)
if SASS:

scatter_hist(plot[0], plot[1],sass, ax, ax_histx, ax_histy)
elif logP:

scatter_hist(plot[0], plot[1],logps, ax, ax_histx, ax_histy)
else:

scatter_hist(plot[0], plot[1],qeds, ax, ax_histx, ax_histy)
#plt.xlim(-3, 3)
#plt.ylim(-1, 10)
bar =fig.colorbar(cm.ScalarMappable(norm=norm), ax=ax,cax =cbaxes,ticks=ticks)
#bar.ax.set_yticks()

bar.ax.set_yticklabels(ticks)
if SASS:

bar.set_label('SA Scores')
elif logP:

bar.set_label('logP')
else:

bar.set_label('QED')
bar.ax.set_yticklabels(['0.0','0.2','0.4','0.6','0.8','1.0'])

#plt.axis('square')
plt.show()

[ ]: fig.savefig("./FINAL_FIGURES/LOGP_DEEP_CHEMBL_TEST_4000", bbox_inches='tight')

[ ]: ## Project test samples to latent space and perform
## PCA to get the distribution of LOGP, QED, and SA Scores for ZINC
from sklearn.decomposition import KernelPCA
NUM_SAMPLED = 4000
sampled_index = np.random.choice(len(zinc_test_X), NUM_SAMPLED+100 ,␣
↪→replace=False)

sampled_points =[]
qeds = []
sass = []
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logps = []
index = 0
while len(sampled_points) != NUM_SAMPLED:

i = sampled_index[index]
index+=1
smiles = zinc_test_X[i][:].reshape(1,MAX_LEN)
eps = tf.convert_to_tensor(np.random.normal(size=(smiles.shape[0],␣

↪→LATENT_DIM)),dtype = tf.float32)
if IMPLICIT:
t = smile_vae.encoder(smiles,eps)[1]

else:
t = smile_vae.encoder(smiles)[1]

if SELFIES:
smiles = get_smiles_from_tokens(smiles[0],vocab_index)
try:

smiles = decoder(smiles)
except:

continue
elif DEEP:
smiles = get_smiles_from_tokens(smiles[0],vocab_index)
smiles = replace_halogens_inv(smiles)
smiles = converter.decode(smiles)

else:
smiles = get_smiles_from_tokens(smiles[0],vocab_index)
smiles = replace_halogens_inv(smiles)

if len(sampled_points)% 100 == 0:
print(len(sampled_points))

sampled_points.append(t)
m = rdkit.Chem.MolFromSmiles(smiles)
sass.append(sascorer.calculateScore(m))
qeds.append(rdkit.Chem.QED.qed(m))
logps.append(Descriptors.MolLogP(m))

sampled_points = np.array(sampled_points).reshape(NUM_SAMPLED,LATENT_DIM)
PCA = KernelPCA(n_components=2, kernel="linear")
data_transformed = PCA.fit_transform(sampled_points)
from sklearn.preprocessing import MinMaxScaler
scaler1 = MinMaxScaler()
scaler1.fit(np.array(data_transformed[:,0]).reshape(-1,1))
scaler2 = MinMaxScaler()
scaler2.fit(np.array(data_transformed[:,1]).reshape(-1,1))

[ ]: plot = {0: [scaler1.transform(x[0].reshape(1,-1))[0][0] for x in␣
↪→data_transformed],

1: [scaler2.transform(x[1].reshape(1,-1))[0][0] for x in␣
↪→data_transformed]}
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[ ]: def scatter_hist(x, y, colors, ax, ax_histx, ax_histy):
# no labels
ax_histx.tick_params(axis="x", labelbottom=False)
ax_histy.tick_params(axis="y", labelleft=False)

# the hexbin plot:
ax.hexbin(x,y,gridsize=50,C =colors, reduce_C_function=np.mean)

# now determine nice limits by hand:
#binwidth = 0.000025
#xymax = max(np.max(np.abs(x)), np.max(np.abs(y)))
#lim = (int(xymax/binwidth) + 1) * binwidth

bins = np.arange(0, 1, 0.01)
ax_histx.hist(x, bins=bins)
bins = np.arange(0, 1, 0.01)
ax_histy.hist(y, bins=bins, orientation='horizontal')

[ ]: SASS = False
logP = True

[ ]: # definitions for the axes
left, width = 0.1, 0.65
bottom, height = 0.1, 0.65
spacing = 0.005
import matplotlib
if SASS:

ticks=np.arange(1,10,1)
norm = matplotlib.colors.Normalize(vmin=1,vmax=10 )

elif logP:
ticks=np.arange(-9,13+1,2)
norm = matplotlib.colors.Normalize(vmin=-9,vmax=13 )

else:
ticks=np.arange(0,1.2,.2)
norm = matplotlib.colors.Normalize(vmin=0,vmax= 1)

matplotlib.rc('font', size=16)

rect_scatter = [left, bottom, width, height]
rect_histx = [left, bottom + height + spacing, width, 0.2]
rect_histy = [left + width + spacing, bottom, 0.2, height]
print(rect_histy)
# start with a square Figure
fig = plt.figure(figsize=(12,12))
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ax = fig.add_axes(rect_scatter)
cbaxes = fig.add_axes([1.00, 0.1, 0.03, 0.8])

ax_histx = fig.add_axes(rect_histx, sharex=ax)
ax_histy = fig.add_axes(rect_histy, sharey=ax)
if SASS:

scatter_hist(plot[0], plot[1],sass, ax, ax_histx, ax_histy)
elif logP:

scatter_hist(plot[0], plot[1],logps, ax, ax_histx, ax_histy)
else:

scatter_hist(plot[0], plot[1],qeds, ax, ax_histx, ax_histy)
#plt.xlim(-3, 3)
#plt.ylim(-1, 10)
bar =fig.colorbar(cm.ScalarMappable(norm=norm), ax=ax,cax␣
↪→=cbaxes,ticks=ticks)#bar.ax.set_yticks()

bar.ax.set_yticklabels(ticks)
if SASS:

bar.set_label('SA Scores')
elif logP:

bar.set_label('logP')
else:

bar.set_label('QED')
bar.ax.set_yticklabels(['0.0','0.2','0.4','0.6','0.8','1.0'])

#plt.axis('square')
plt.show()

[ ]: fig.savefig("./FINAL_FIGURES/LOGP_IMPLICIT_SMILES_ZINC_4000",␣
↪→bbox_inches='tight')

[ ]: ## Start Optimzation
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import numpy as np
from numpy.random import multivariate_normal
import GPyOpt
from GPyOpt.methods import BayesianOptimization

sampled_smiles = np.array(sampled_smiles)
sampled_smiles= sampled_smiles.reshape(len(sampled_smiles),LATENT_DIM)

[ ]: import GANS.ic50predictions as ic50predictions
from IPython.display import SVG, display
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from rdkit.Chem import AllChem as Chem
from rdkit.Chem import PandasTools

[ ]: ## Load in necessary file for prediction
ic50pred = ic50predictions.IC50_MCA(vocab_size=VOCAB_SIZE,

embedding_dim =EMBEDDING_DIM, num_genes =2128,
hidden_dim = HIDDEN_DIM, max_len = MAX_LEN,
latent_dim = LATENT_DIM)

if SELFIES:
ic50pred.load_weights('new_ic50network_selfies')

else:
ic50pred.load_weights('new_updated_ic50g_ic50network_smiles_basic')

[ ]: ## Create domain bounds ##
bounds =[(-4,4)]*LATENT_DIM
domains = []
for idx in range(len(bounds)):

domain = {'name': 'latent'+str(idx), 'type': 'continuous'}
domain['domain'] = bounds[idx]
domains.append(domain)

[ ]: def obj_function(z):
x = 0
val = ic50pred(encoded_smiles = z, genes = sampled_gene_expressions[0].

↪→reshape(1,2128)).numpy()[0][0] - x
print(val)
return val

[ ]: UBO = BayesianOptimization(f=obj_function, X =sampled_smiles,Y =␣
↪→sampled_predictions,

domain=domains,batch_size=1,initial_design_numdata=0)

[ ]: MAX_ITER = 500
UBO.run_optimization(max_iter = MAX_ITER)

[ ]: UBO.plot_convergence()

[ ]: ins = np.array(UBO.X).tolist()
print(len(ins))
outs = np.array(UBO.Y ).tolist()
print(len(outs))
outs, ins = (list(t) for t in zip(*sorted(zip(outs, ins))))

[ ]: print("Value of z that minimises the objective:" + str(UBO.x_opt))
print("Maximum value of the objective: "+str(UBO.fx_opt))
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[ ]: def smiles_check(smiles):
try:
mol = rdkit.Chem.MolFromSmiles(smiles)
if mol is not None:

return smiles
except:

pass
return None

[ ]: def smiles_to_mol(smiles):
try:
mol = rdkit.Chem.MolFromSmiles(smiles)
return mol

except:
return None

[ ]: ## Perform conversion of latent space back to original SMILES
def smile_to_smiles_percentage(z,norm,decode_attempts=256):

z_mean = z
zs = []
#decode_attempts = 256
for i in range(decode_attempts):
zn = perturb_z(z_mean,norm)
zs.append(zn)

zs = np.array(zs)
zs = zs.reshape((zs.shape[0],zs.shape[-1]))
x_decoded = []
if TRANSFORMER_DECODE:
x_decoded = transformer(zs)

else:
x_decoded = smile_vae.decoder(zs)

decoded_smiles = []
for x_dec in x_decoded:
decoded_smiles.append(get_smiles_from_logits(tf.

↪→reshape(x_dec,[1,MAX_LEN,VOCAB_SIZE]),vocab_index))
actual_smiles =decoded_smiles
if DEEP == True:
actual_smiles = get_smiles_from_deep(decoded_smiles)
correct_smiles =[replace_halogens_inv(v) for i,v in␣

↪→enumerate(actual_smiles) if v != None and v != '' ]
elif SELFIES:
actual_smiles = get_smiles_from_selfies(decoded_smiles)
correct_smiles =[v for i,v in enumerate(actual_smiles) if v != None]

else:
correct_smiles =[replace_halogens_inv(v) for i,v in␣

↪→enumerate(actual_smiles) if v != None and v != '' ]
actual_correct_smiles = []
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for smiles in correct_smiles:
actual_correct_smiles.append(smiles_check(smiles))

actual_correct_smiles =[v for i,v in enumerate(actual_correct_smiles) if v !=␣
↪→None ]
num_samples = len(actual_correct_smiles)
generator = MockGenerator(actual_correct_smiles)
benchmark = UniquenessBenchmark(number_samples=num_samples)
#print(benchmark.assess_model(generator).score*decode_attempts)
return actual_correct_smiles

[ ]: def encode(smiles_list):
means = []
for smiles in smiles_list:
tok_smile = None
if SELFIES:

tok_smile =tokenize_selfies(smiles)
else:

tok_smile = replace_halogens(smiles)
tok_smile = tokenize_smiles(tok_smile)

if SELFIES:
smile_ordered = integer_encode_selfies(tok_smile,vocab)

else:
smile_ordered = integer_encode(tok_smile,vocab)

t = tf.keras.preprocessing.sequence.pad_sequences(np.array(smile_ordered).
↪→reshape(1,len(smile_ordered)),maxlen = PAD_SIZE,padding='post')

h, z_mean,z_log_var = smile_vae.encoder(np.array(t))
means.append(z_mean)

return means

[ ]: import pandas as pd

def smiles_distance_z(smiles_list, z0):
dists = []
z_reps = encode(smiles_list)
for z_rep in z_reps:
dists.append(np.linalg.norm(z0 - z_rep, axis=None))

return np.array(dists)

def ic50_dfcalc(smiles_list):
vals = []
z_reps = encode(smiles_list)
for z_rep in z_reps:

if z_rep == None:
vals.append(None)

else:
val = ic50pred(encoded_smiles = z_rep, genes =␣

↪→sampled_gene_expressions[0].reshape(1,2128)).numpy()[0][0]
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val = ic50_scaler.inverse_transform(np.array(val).reshape(-1,1))
vals.append(val[0])

return np.array(vals)

def sas_dfcalc(smiles_list):
vals = []
for smiles in smiles_list:

try:
m = rdkit.Chem.MolFromSmiles(smiles)
if m is not None:
vals.append(sascorer.calculateScore(m))

else:
vals.append(None)

except:
vals.append(None)

return np.array(vals)

def qed_dfcalc(smiles_list):
vals = []
for smiles in smiles_list:

try:
m = rdkit.Chem.MolFromSmiles(smiles)
if m is not None:
vals.append(rdkit.Chem.QED.qed(m))

else:
vals.append(None)

except:
vals.append(None)

return np.array(vals)

def logp_dfcalc(smiles_list):
vals = []
for smiles in smiles_list:

try:
m = rdkit.Chem.MolFromSmiles(smiles)
if m is not None:
vals.append(Descriptors.MolLogP(m))

else:
vals.append(None)

except:
vals.append(None)

return np.array(vals)

## Method to display newly dicovered SMILES
def prep_mol_df_i( smiles):

df = pd.DataFrame({'smiles': smiles})
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sort_df = pd.DataFrame(df[['smiles']].groupby(
by='smiles').size().rename('count').reset_index())

df = df.merge(sort_df, on='smiles')
df = df.drop_duplicates(subset='smiles')
df = df[df['smiles'] != '']
df.reset_index(drop=True, inplace=True)
#df = df[df['smiles'].apply(fast_verify)]
if len(df) > 0:

df['mol'] = df['smiles'].apply(smiles_to_mol)
if len(df) > 0:

df = df[pd.notnull(df['mol'])]
t = df['smiles']
if len(df) > 0:

#df['distance'] = smiles_distance_z(t, z)
df['frequency'] = df['count'] / float(sum(df['count']))
df['IC50'] = ic50_dfcalc(t)
df['QED'] = qed_dfcalc(t)
df['LOGP'] = logp_dfcalc(t)
df['SAS'] = sas_dfcalc(t)
df = df[['smiles', 'count', 'frequency','IC50','QED','LOGP','SAS','mol']]
df.sort_values(by='IC50', inplace=True)
df.reset_index(drop=True, inplace=True)

return df

def prep_mol_df( smiles, z):
df = pd.DataFrame({'smiles': smiles})
sort_df = pd.DataFrame(df[['smiles']].groupby(

by='smiles').size().rename('count').reset_index())

df = df.merge(sort_df, on='smiles')
df = df.drop_duplicates(subset='smiles')
df = df[df['smiles'] != '']
df.reset_index(drop=True, inplace=True)
#df = df[df['smiles'].apply(fast_verify)]
if len(df) > 0:

df['mol'] = df['smiles'].apply(smiles_to_mol)
if len(df) > 0:

df = df[pd.notnull(df['mol'])]
t = df['smiles']
if len(df) > 0:

df['distance'] = smiles_distance_z(t, z)
df['frequency'] = df['count'] / float(sum(df['count']))
df['IC50'] = ic50_dfcalc(t)
df['QED'] = qed_dfcalc(t)
df['LOGP'] = logp_dfcalc(t)
df['SAS'] = sas_dfcalc(t)
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df = df[['smiles', 'distance', 'count',␣
↪→'frequency','IC50','QED','LOGP','SAS','mol']]

df.sort_values(by='IC50', inplace=True)
df.reset_index(drop=True, inplace=True)

return df

[ ]: ## Perform genetic algorithm for optimization:
## We keep the top 500 examples:
def get_trad_score(compound):

m = rdkit.Chem.MolFromSmiles(compound)
sas = sascorer.calculateScore(m)
qed = rdkit.Chem.QED.qed(m)
return 5*qed -sas

[ ]: def get_trad_scores(compounds):
scores = []
for compound in compounds:
scores.append(get_trad_score(compound))

return np.array(scores)

[ ]: ## Perform genetic algorithm for optimization:
## We keep the top 500 examples:
def get_ic50s(latents, gene_expression):

num_gene_expressions = []
for i in range(len(latents)):
num_gene_expressions.append(gene_expression)

num_gene_expressions = np.array(num_gene_expressions)
while True:

try:
ic50s_preds = ic50pred(encoded_smiles=np.array(latents),genes␣

↪→=num_gene_expressions.reshape(len(latents),2128))
except:

print('IC50 PREDICTION EXCEPTION')
continue

break
return ic50s_preds

def get_ic50s_mult(latents, gene_expressions):
avg_ic50s = []
for j in range(len(latents)):
g_avg_ic50s = []
num_latents = []
for i in range(len(gene_expressions)):

num_latents.append(latents[j])
num_latents = np.array(num_latents)
while True:

try:
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g_avg_ic50s.append(ic50pred(encoded_smiles=np.array(num_latents),genes␣
↪→=gene_expressions.reshape(len(gene_expressions),2128)))

except:
print('IC50 PREDICTION EXCEPTION')
continue

break
avg_ic50s.append(np.average(g_avg_ic50s))

return avg_ic50s

[ ]: ## Genetic algorithm for optimizing ic50
current_smiles = list(np.array(sampled_smiles).reshape(-1,LATENT_DIM))
decoded_smiles = list(np.array(real_sampled_smiles))
gene_expression = np.array(sampled_gene_expressions[66])
top_ic50s = list(get_ic50s(current_smiles, gene_expression))
norm = 10.0
num_generations = 10
num_out = 100
num_children = 10
for generation in range(num_generations):

new_current_smiles =[]
new_decoded_smiles = []
new_ic50s = []
idx = 0
if len(current_smiles) != 0:

for i in range(num_children):
parent1 = np.random.randint(0,len(current_smiles))
parent2 = np.random.randint(0,len(current_smiles))
diff = np.random.uniform(0, 1.0)
child1 = np.array(current_smiles[parent1])*diff + (1-diff)*np.

↪→array(current_smiles[parent2])
child2 = np.array(current_smiles[parent1])*(1-diff)+ diff*np.

↪→array(current_smiles[parent2])

## Add child1
new_smiles = smile_to_smiles_percentage(np.array(child1).

↪→reshape(-1,LATENT_DIM),1.0)
new_smiles = set(new_smiles)
cnew_decoded_smiles = []
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
if new_smiles_enc.shape[0] != 0:
print('New Child')
ic50_preds = list(get_ic50s(new_smiles_enc,gene_expression))
new_ic50s.extend(ic50_preds)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)
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## Add child2
new_smiles = smile_to_smiles_percentage(np.array(child2).

↪→reshape(-1,LATENT_DIM),1.0)
new_smiles = set(new_smiles)
cnew_decoded_smiles = []
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
if new_smiles_enc.shape[0] != 0:
print('New Child')
ic50_preds = list(get_ic50s(new_smiles_enc,gene_expression))
new_ic50s.extend(ic50_preds)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)

if len(new_ic50s) != 0:
print("BEST CHILD: " +new_decoded_smiles[np.argmin(new_ic50s)])
print("BEST CHILD IC50: {:.5f}".format(min(new_ic50s)[0])+'\n')

for smiles in current_smiles:
#norm = np.random.uniform(0, jump_size)
new_smiles = smile_to_smiles_percentage(np.array(smiles).

↪→reshape(-1,LATENT_DIM),norm)
new_smiles = set(new_smiles)
cnew_decoded_smiles = list([decoded_smiles[idx]])
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
new_smiles_enc = np.concatenate((np.array(smiles).

↪→reshape(-1,LATENT_DIM),new_smiles_enc))
ic50_preds = list(get_ic50s(new_smiles_enc,gene_expression))
new_ic50s.extend(ic50_preds)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)
print("BEST CURRENT EVOLUTION: "+new_decoded_smiles[np.argmin(new_ic50s)])
print("BEST EVOLUTION IC50 : {:.5f}".format(min(new_ic50s)[0])+'\n')
idx +=1

print('THIS GENERATION:')
decoded_smiles.extend(new_decoded_smiles)
current_smiles.extend(new_current_smiles)
top_ic50s.extend(new_ic50s)
top_ic50s, current_smiles,decoded_smiles = (list(t) for t in␣

↪→zip(*sorted(zip(top_ic50s, np.array(current_smiles).tolist(), np.
↪→array(decoded_smiles).tolist() ))))
non_repeat_decoded_smiles = []
indexes = []
index = 0
for smiles in decoded_smiles:

if smiles not in non_repeat_decoded_smiles:
non_repeat_decoded_smiles.append(smiles)
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indexes.append(index)
index+=1

decoded_smiles =np.array(decoded_smiles)[indexes].tolist()
top_ic50s =np.array(top_ic50s)[indexes].tolist()
current_smiles =np.array(current_smiles)[indexes].tolist()
top_ic50s = top_ic50s[:num_out]
current_smiles = current_smiles[:num_out]
decoded_smiles = decoded_smiles[:num_out]
print("BEST GENERATION : "+ decoded_smiles[np.argmin(top_ic50s)])
print("BEST GENERATION IC50 : {:.5f}".format(min(top_ic50s)[0]) +'\n')
print(decoded_smiles)

[ ]: ## Genetic algorithm for optimizing SAS/QED

#current_smiles = list(np.array(sampled_smiles).reshape(-1,LATENT_DIM))
current_smiles = current_smiles
decoded_smiles = decoded_smiles
#decoded_smiles = list(np.array(real_sampled_smiles))
top_trads = list(get_trad_scores(decoded_smiles))
norm = 10.0
num_generations = 1
num_out = 100
num_children = 10
for generation in range(num_generations):

new_current_smiles =[]
new_decoded_smiles = []
new_trads = []
idx = 0
if len(current_smiles) != 0:

for i in range(num_children):
parent1 = np.random.randint(0,len(current_smiles))
parent2 = np.random.randint(0,len(current_smiles))
diff = np.random.uniform(0, 1.0)
child1 = np.array(current_smiles[parent1])*diff + (1-diff)*np.

↪→array(current_smiles[parent2])
child2 = np.array(current_smiles[parent1])*(1-diff)+ diff*np.

↪→array(current_smiles[parent2])

try:
## Add child1
new_smiles = smile_to_smiles_percentage(np.array(child1).

↪→reshape(-1,LATENT_DIM),1.0)
new_smiles = set(new_smiles)
cnew_decoded_smiles = []
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
if new_smiles_enc.shape[0] != 0:
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print('New Child')
trad_scores = list(get_trad_scores(cnew_decoded_smiles))
new_trads.extend(trad_scores)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)

except:
continue

## Add child2
try:
new_smiles = smile_to_smiles_percentage(np.array(child2).

↪→reshape(-1,LATENT_DIM),1.0)
new_smiles = set(new_smiles)
cnew_decoded_smiles = []
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
if new_smiles_enc.shape[0] != 0:

print('New Child')
trad_scores = list(get_trad_scores(cnew_decoded_smiles))
new_trads.extend(trad_scores)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)

except:
continue

if len(new_trads) != 0:
print("BEST CHILD: " +new_decoded_smiles[np.argmax(new_trads)])
print("BEST CHILD TRAD: {:.5f}".format(max(new_trads))+'\n')

for smiles in current_smiles:
#norm = np.random.uniform(0, jump_size)
new_smiles = smile_to_smiles_percentage(np.array(smiles).

↪→reshape(-1,LATENT_DIM),norm)
new_smiles = set(new_smiles)
cnew_decoded_smiles = list([decoded_smiles[idx]])
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
new_smiles_enc = np.concatenate((np.array(smiles).

↪→reshape(-1,LATENT_DIM),new_smiles_enc))
trad_scores = list(get_trad_scores(cnew_decoded_smiles))
new_trads.extend(trad_scores)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)
print("BEST CURRENT EVOLUTION: "+new_decoded_smiles[np.argmax(new_trads)])
print("BEST EVOLUTION TRAD : {:.5f}".format(max(new_trads))+'\n')
idx +=1

print('THIS GENERATION:')
decoded_smiles.extend(new_decoded_smiles)
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current_smiles.extend(new_current_smiles)
top_trads.extend(new_trads)
top_trads, current_smiles,decoded_smiles = (list(t) for t in␣

↪→zip(*sorted(zip(top_trads, np.array(current_smiles).tolist(), np.
↪→array(decoded_smiles).tolist() ), reverse=True)))
non_repeat_decoded_smiles = []
indexes = []
index = 0
for smiles in decoded_smiles:

if smiles not in non_repeat_decoded_smiles:
indexes.append(index)

index+=1
decoded_smiles =np.array(decoded_smiles)[indexes].tolist()
top_trads =np.array(top_trads)[indexes].tolist()
current_smiles =np.array(current_smiles)[indexes].tolist()
top_trads = top_trads[:num_out]
current_smiles = current_smiles[:num_out]
decoded_smiles = decoded_smiles[:num_out]
print("BEST GENERATION : "+ decoded_smiles[np.argmax(top_trads)])
print("BEST GENERATION TRAD : {:.5f}".format(max(top_trads)) +'\n')
print(decoded_smiles)

[ ]: top_trads = top_trads[:num_out]
current_smiles = current_smiles[:num_out]
decoded_smiles = decoded_smiles[:num_out]
print("BEST GENERATION : "+ decoded_smiles[np.argmax(top_trads)])
print("BEST GENERATION TRAD : {:.5f}".format(max(top_trads)) +'\n')
print(decoded_smiles)

[ ]: ## MULT
## Genetic algorithm for optimizing Sarcoma drugs

current_smiles = list(np.array(sarcoma_smiles_z).reshape(-1,LATENT_DIM))
decoded_smiles = list(sarcoma_smiles)
gene_expression = np.array(sarcoma_gene_expressions)
top_ic50s = list(get_ic50s_mult(current_smiles, gene_expression))
norm = 10.0
num_generations = 10
num_out = 100
num_children = 10
for generation in range(num_generations):

new_current_smiles =[]
new_decoded_smiles = []
new_ic50s = []
idx = 0
if len(current_smiles) != 0:

for i in range(num_children):
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parent1 = np.random.randint(0,len(current_smiles))
parent2 = np.random.randint(0,len(current_smiles))
diff = np.random.uniform(0, 1.0)
child1 = np.array(current_smiles[parent1])*diff + (1-diff)*np.

↪→array(current_smiles[parent2])
child2 = np.array(current_smiles[parent1])*(1-diff)+ diff*np.

↪→array(current_smiles[parent2])

## Add child1
new_smiles = smile_to_smiles_percentage(np.array(child1).

↪→reshape(-1,LATENT_DIM),1.0)
try:
new_smiles = set(new_smiles)
cnew_decoded_smiles = []
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
if len(new_smiles_enc) != 0:

ic50_preds = list(get_ic50s_mult(new_smiles_enc,gene_expression))
new_ic50s.extend(ic50_preds)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)

except:
continue

## Add child2
new_smiles = smile_to_smiles_percentage(np.array(child2).

↪→reshape(-1,LATENT_DIM),1.0)
try:
new_smiles = set(new_smiles)
cnew_decoded_smiles = []
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
if len(new_smiles_enc) != 0:

ic50_preds = list(get_ic50s_mult(new_smiles_enc,gene_expression))
new_ic50s.extend(ic50_preds)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)

except:
continue

print("BEST CHILD: " +new_decoded_smiles[np.argmin(new_ic50s)])
print("BEST CHILD IC50: {:.5f}".format(min(new_ic50s))+'\n')

for smiles in current_smiles:
#norm = np.random.uniform(0, jump_size)
new_smiles = smile_to_smiles_percentage(np.array(smiles).

↪→reshape(-1,LATENT_DIM),norm)
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try:
new_smiles = set(new_smiles)
cnew_decoded_smiles = list([decoded_smiles[idx]])
cnew_decoded_smiles.extend(new_smiles)
new_smiles_enc = np.array(encode(new_smiles)).reshape(-1,LATENT_DIM)
new_smiles_enc = np.concatenate((np.array(smiles).

↪→reshape(-1,LATENT_DIM),new_smiles_enc))
ic50_preds = list(get_ic50s_mult(new_smiles_enc,gene_expression))
new_ic50s.extend(ic50_preds)
new_current_smiles.extend(list(new_smiles_enc))
new_decoded_smiles.extend(cnew_decoded_smiles)

except:
continue

print("BEST CURRENT EVOLUTION: "+new_decoded_smiles[np.argmin(new_ic50s)])
print("BEST EVOLUTION IC50 : {:.5f}".format(min(new_ic50s))+'\n')
idx +=1

print('THIS GENERATION:')
decoded_smiles.extend(new_decoded_smiles)
current_smiles.extend(new_current_smiles)
top_ic50s.extend(new_ic50s)
top_ic50s, current_smiles,decoded_smiles = (list(t) for t in␣

↪→zip(*sorted(zip(top_ic50s, np.array(current_smiles).tolist(), np.
↪→array(decoded_smiles).tolist() ))))
non_repeat_decoded_smiles = []
indexes = []
index = 0
for smiles in decoded_smiles:

if smiles not in non_repeat_decoded_smiles:
non_repeat_decoded_smiles.append(smiles)
indexes.append(index)

index+=1
decoded_smiles =np.array(decoded_smiles)[indexes].tolist()
top_ic50s =np.array(top_ic50s)[indexes].tolist()
current_smiles =np.array(current_smiles)[indexes].tolist()
top_ic50s = top_ic50s[:num_out]
current_smiles = current_smiles[:num_out]
decoded_smiles = decoded_smiles[:num_out]
print("BEST GENERATION : "+ decoded_smiles[np.argmin(top_ic50s)])
print("BEST GENERATION IC50 : {:.5f}".format(min(top_ic50s)) +'\n')
print(decoded_smiles)

[ ]: ## Get neessary train approved cancer drugs for comparsion
train_smiles_path = './Datasets/train_Tox_data.smi'
smiles_train = pd.read_csv(train_smiles_path,delimiter='\t',header=None)
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[ ]: ms = [rdkit.Chem.MolFromSmiles(x) for x in smiles_train[0]]
indexs = [i for i,v in enumerate(ms) if v != None]
ms =[v for i,v in enumerate(ms) if v != None]
fps_drugs = [rdkit.Chem.RDKFingerprint(x) for x in ms]

[ ]: ms = [rdkit.Chem.MolFromSmiles(x) for x in decoded_smiles]
indexs = [i for i,v in enumerate(ms) if v != None]
ms =[v for i,v in enumerate(ms) if v != None]
fps_cand = [rdkit.Chem.RDKFingerprint(x) for x in ms]

[ ]: from rdkit import DataStructs
closest_drugs = []
closest_values = []
for idx1 in range(len(fps_cand)):

closest_drugs.append(smiles_train[0][0])
closest_values.append(0)
for idx2 in range(len(fps_drugs)):
tanimoto = DataStructs.FingerprintSimilarity(fps_cand[idx1],fps_drugs[idx2])
if closest_values[idx1] < tanimoto:

closest_values[idx1] = tanimoto
closest_drugs[idx1] = smiles_train[0][idx2]

[ ]: m
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